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Abstract

Grid Computing has proven to be a solution for big
workflow execution, especially in Bioinformatics. How-
ever, Grid nature itself introduces overheads that make
its use in many cases an unfeasible solution if consider-
ing wall-time. Different heuristics such as list schedul-
ing, agglomeration and replication are available for op-
timizing workflow execution. In particular, the replica-
tion heuristics have been previously used in heteroge-
neous environments with good results. In this work, we
analyze their use for workflow scheduling on Grid in-
frastructures. In particular, we study its applications to
an intree workflow, generated by the distribution of the
CD-HIT application. The experiments were conducted
on a testbed made of resources from two different grids
and results show a significant reduction of the workflow
execution time.

1 Introduction

Workflow management systems and Grid Comput-
ing are providing solutions to problems proposed by
Bioinformatics. Workflow management systems [22] al-
low the execution of complex applications than can be
divided in tasks with data dependencies. Grid Com-
puting, on the other hand, offers the applications ac-
cess to a great amount of computing resources.
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(FEDER) and Fondo Social Europeo (FSE), through BioGridNet
Research Program S-0505/TIC/000101, and by Ministerio de Ed-
ucación y Ciencia, through research grant TIN2006-02806. Also,
this work makes use of results produced by the Enabling Grids
for E-sciencE project, a project co-funded by the European Com-
mission (under contract number INFSO-RI-031688) through the
Sixth Framework Programme. EGEE brings together 91 part-
ners in 32 countries to provide a seamless Grid infrastructure
available to the European research community 24 hours a day.
Full information is available at http://www.eu-egee.org/.

In a previous paper [21], we considered a Bioin-
formatics application, CD-HIT (Cluster Database at
High Identity with Tolerance) [11], for its porting to
the Grid. This application performs protein cluster-
ing, which consists in removing redundant sequences
from a protein database in order to generate a database
of only the representatives. Protein clustering can be
applied in many activities such as protein family clas-
sification, domain analysis, organization of large pro-
tein databases or improving database search perfor-
mance. However, the Grid version of CD-HIT didn’t
provide good performance results, even if it served to
bypass memory constraints and so process large data
sets. This happened because the nature of the Grid
(dynamism, heterogenity and high fault rate).

As optimization is needed in this workflow, de-
scribed with the previous work in Section 2, we consid-
ered well known heuristics that proved to throw good
results in other heterogeneous computational infras-
tructures. These optimization strategies are described
in Section 3. However, in Section 4 we focused in the
replication strategy for optimizing the cited workflow
and then, evaluated it through experimental results in
Section 5. Finally, some conclusions and future work
are shown at the end of the paper.

2 The Application

The CD-HIT application was successfully ported to
the Grid [21] using the GridW ay metascheduler [9].
However, workflow management systems such as the
Directed Acyclic Graph Manager (DAGMan) [18] pro-
vided by Condor, and Pegasus [4] were considered
among others. In the past, the GridW ay metasched-
uler has been previously used with good results in many
research areas, including Bioinformatics. It natively
handles DAG based workflows and allows advanced
flow structures like loops or branches. GridW ay of-
fers an implementation of both C and JAVA bindings
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of the Distributed Resource Management Application
API (DRMAA), which is an Open Grid Forum1 stan-
dard [8].

Regarding the workflow management performed by
GridW ay, workflow specification follows an abstract
model, and its concretion, a dynamic scheme [22].
Scheduling decisions are taken considering the require-
ments for each task and resource ranking expressions
at run-time. Additionally, historical information about
task execution is considered. GridW ay provides fault
tolerance mechanisms which include trying the task ex-
ecution or file transfer on the same resource in case of
failure, and submitting of a failed task to an alternate
resource.

The first approach to the gridification of this al-
gorithm, described in a previous publication [21], was
a simple case of list scheduling where the workflow
nodes were given a certain priority and then handled to
GridW ay. Even if complex techniques may be used for
determining task priority [13], in our case, nodes from
the critical path [15] deserve the highest priority. This
priority is given by the order in which jobs are submit-
ted to GridW ay at the beginning of the process. Due
to dependencies among workflow nodes, not all tasks
are submitted at the first moment to remote resources,
as they are put on hold. Summarizing, priorities are
established both by the order jobs are sent to schedule
and by their dependencies.

Distributing the workflow nodes over the Grid has
proven to bypass the memory limitations intrinsic to
a single machine. Nevertheless, execution times mea-
sured on the Grid were higher than those obtained lo-
cally as Grid environment is highly dynamic, heteroge-
neous and faulty. In addition, the time a task waits in
the remote queuing system can be the most significant
part of each task’s walltime, specially in infrastructures
at production level. Hence the remote queue waiting
time completely determines the overall efficiency ob-
tained by the application.

The first experiments were performed with a mid-
sized protein database (504,876 proteins, 435MB).
However, the Spanish National Oncology Research
Center (Centro Nacional de Investigaciones On-
cológicas - CNIO)2 requires the analysis of larger
databases. For this purpose, the Grid approach is still
valid due to the single machine restrictions mentioned
above, but the model had to be revisited considering
the optimization heuristics cited at the following Sec-
tion.

1http://www.drmaa.org/
2http://www.cnio.es/

3 Workflow Optimization Heuristics

Among the optimization strategies that may ap-
ply to a workflow, there are different approaches that
can be considered, taking into account the nature of
the scheduling problem. In the first approach, called
list scheduling, priorities are assigned to jobs either
statically or dynamically [16]. In general, tasks are
not scheduled regarding ulterior ones so this technique
doesn’t always provide an optimized solution. Algo-
rithms pertaining to this approach are:

• Heterogeneous Earliest Finish Time (HEFT) [19],
which schedules tasks minimizing their finishing
time in an insertion based manner;

• Critical Path on a Processor (CPOP) [19], that
detaches a machine just for critical path tasks;

• Bubble Scheduling and Allocation (BSA) [10],
which firstly serializes the task graph and then in-
serts all the tasks to a processor;

• Dynamic Level Scheduling (DLS) [17], that delays
scheduling when the given task is ready;

• Critical Nodes Parent Trees (CNPT) [5], which
considers the task earliest execution time;

• Iso-Level Heterogeneous Allocation (ILHA) [14],
that allocates to each processor a number of tasks
proportional to its computing power.

The second approach is the agglomeration tech-
nique, which consists in clustering jobs in groups so
communication overheads are reduced. Even if this
technique is not complex in its implementation, the
obtained performance by itself, is not as desiderable as
expected [2].

The last approach is the replication strategy, that
this contribution will focus on. In this technique, some
jobs are replicated in order to increase the possibility
of speed-up the execution due to a better resource se-
lection. Algorithms inside this strategy are:

• Heterogeneous Critical Tasks Reverse Duplicator
(HCTRD) [6], that replicates the parent-tree or
some selected parents of the selected task;

• Bottom-up Top-down Duplication Heuristic
(BTDH) [3], which assumes that task starting
time may be reduced eventually by the replication
of all the necessary task ancestors;

• Heterogeneous Critical Parents with Fast Dupli-
cator (HCPFD) [7], that performs the replication
considering the idle time left by the selected task
on a given machine;
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• Critical Path based Full Duplication Algorithm
(CPFD) [1], which replicates all possible parents
of the considered task.

A version of this last heuristic was chosen because its
structure fits the studied Bioinformatics application,
and its adoption is presented in the following section.

4 Applying the Replication Heuristic

In this contribution, we apply the replication strat-
egy for improving the workflow’s efficiency as shown at
Figure 1. Again, in this technique supplementary tasks
are created for given nodes of the workflow. When one
of these tasks ends, the node is taken as executed and
the rest of replicated tasks are killed. This way, the
more replicated tasks are created, the higher is the pos-
sibility for that node to be executed shortly by reducing
the effect of job failures and queue times.

A
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B

Figure 1. The replication technique applied to
the CD-HIT algorithm.

Different variants of this strategy can be devised de-
pending on the nodes where replication is applied. The
most simple variant consists in the replication of all the
tasks. In other variant, just the nodes from the critical
path are replicated. In the last variant, those target
nodes above a given blocking threshold are replicated.
We define the blocking value as the number of nodes
of the workflow which depend on the execution of that
node and it is calculated by:

bi,j =
{

ST (N − i) if i = j
(i − 1) + ST (N − i) if i �= j

(1)

being i the column and j the level where the node is
located in the workflow. N is the number of workflow
levels. Finally, ST (n) is the blocking subtree generated
by a node integrating the critical path and can be es-
timated as:

ST (n) =
n(1 + n)

2
(2)

which is the sum of terms belonging to an arithmetic
progression. An example of this is shown at Figure 1.
In the present contribution, the critical path variant
was employed (Critical Path based Full Duplication Al-
gorithm [1]), creating 3 copies per task.

However, some studies conducted about job repli-
cation at the same resource state that local backfilling
mechanisms generate mostly drawbacks [12]. In our
case, not all replicated tasks are necessarily sent to
the same cluster, so these mechanisms may not always
affect global performance. Moreover, when a resource
fails, GridW ay implements an exponential linear back-
off strategy at resource level, henceforth resources with
persistent failures are discarded. The replication tech-
nique, in conjunction with this scheduling policy, allows
a fast functional resource discovery at the beginning of
the workflow execution.

5 Experimental Results

The input protein database is a compound of
UniProt3 entries and sequence fragments of the Sar-
gasso Sea meta-genome4, all of them provided by
the National Center for Biotechnology Information
(NCBI)5. Its size is 1.7GB and it stores 4,186,284 pro-
teins. Focusing on job execution, input file size and
job number depend on the number of divisions made
to the starting protein database. For this contribution,
we considered 32, 40 and 48 divisions.

For processing the proposed database, two Grid in-
frastructures were considered: regional and worldwide,
both of them detailed at Table 1. Local and regional
machines are nearer to the one where the job submis-
sion takes place so they offer less latency. On the other
hand, machines pertaining to the Enabling Grids for
E-siencE (EGEE)6 infrastructure are more in number
and offer more throughput. But, even with busier ma-
chines, the EGEE infrastructure guarantees exclusive-
ness of CPU use. As coordinated harnessing of these
infrastructures was retained necessary for the process-
ing of such a big database, the use of GridW ay was still
considered, due to its interoperability capabilities [20].
Experiments were conducted for each database division
taken into account and results were compared depend-
ing whether the replication technique was used or not.
Tasks were launched from Universidad Complutense de
Madrid (UCM), belonging to GRIDIMadrid7, at dif-
ferent times on different days of the week during April

3http://www.ncbi.nlm.nih.gov/RefSeq/
4ftp://ftp.ncbi.nih.gov/genbank/wgs/
5http://www.ncbi.nlm.nih.gov/
6http://www.eu-egee.org/
7http://www.gridimadrid.org/
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Table 1. Grid resources from the joint infras-
tructure employed during the experiment.

Site Count. Proc. Speed Nodes
GRIDIMadrid Resources

UCM ES P4 3216 2
CIEMAT ES P4 2392 22
EGEE Resources (BIOMED Virtual Organization)
BHAM-UNI UK PIII 800 128
BRUNEL UK P4 2000 5
CGG FR PIII 1266 56
CIEMAT ES PIII 1001 220
CYF-KR PL P4 2800 264
GRID-ACAD BG P4 2400 78
HELLASGRID GR P4 3400 356
IFCA ES P4 3200 96
II MK P4 3300 8
IMPERIAL UK P4 2000 188
IN2P3 FR PIII 1001 569
INFN IT P4 2400 124
IPP-ACAD BG P4 2800 10
JET-EFDA UK PIII 1098 66
KELDYSH RU P4 3000 14
L.-HEP UK P4 3000 380
LIP PT P4 2200 52
MAN-UNI UK P4 2800 844
PNPI RU P4 3000 112
SAVBA SK P4 3200 41
SRCE HR P4 2193 16
UAM ES P4 2566 14
UCL UK P4 2800 312
UNI-LINZ AT P4 3014 8

2007. Finally, a constrain was added to scheduling:
the maximum number of tasks submitted to a site was
limited to 10.

Consolidated average CPU (Tcpu), file transfer
(Txfr) and queuing (Tqueue) times and their standard
deviations for the workflow tasks are shown in Figure 2,
categorized by the different number of database parti-
tions. Both Tcpu and Tqueue present a high variability.
In the case of Tcpu, resources with different computing
capacity were available during each experiment. On
the other hand, the variability of Local Resource Man-
agement Systems (LRMS) located at the resources, af-
fected Tqueue. Txfr also presents some variability, this
is due to the different network links involved.

Figure 3 shows values of different execution times: T
is the experimental workflow execution time and Texp

is the expected walltime, which is explained next. The
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Figure 2. Consolidated CPU (Tcpu), file trans-
fer (Txfr) and queuing (Tqueue) times for the
workflow tasks and different database parti-
tion number, with and without optimization.
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Figure 3. Workflow execution times for differ-
ent number of database divisions without op-
timization and using the replication strategy (3
copies of each critical path task).

expected walltime (Texp) does take into account only
the critical path tasks and not considering job failures.
The value of Texp is the same for both cases (with and
without optimization) and it is calculated as:

Texp = N · (Tcpu + Txfr + Tqueue), (3)

where N is the number of database divisions. Figure 3
shows that the obtained experimental times applying
the optimization are lower than without.

Speed-up can be computed dividing the overall ex-
ecution time by the workflow’s sequential time (Tseq).
It is possible to estimate Tseq with:

Tseq = N · TA
cpu + TB

cpu · N · (N + 1)
2

, (4)
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Figure 4. Speed-up of the workflow execution
for different number of database divisions,
with and without optimization.

where TA
cpu and TB

cpu are the CPU time of shaded and
non-shaded tasks as shown in Figure 1. Their values
correspond to the average execution times obtained
during the experiments. In any case, we would like
to remark that sequential processing is not possible to
be done on a single CPU with the original CD-HIT
application due to memory constraints.

Different speed-up estimations are shown at Fig-
ure 4: the experimental speed-up (S) and that obtained
with the expected walltime (Sexp). Basically, we ob-
serve that the optimization allows to raise the level of
parallelism. This doesn’t happen in the non-optimized
case, where S decreases with the number of database
divisions. Some aspects must be considered in this
study. Firstly, the maximum number of simultaneously
used processors was limited to 20 due to scheduling
constraints. Then, the level of parallelism of the ap-
plication decreases on each level because of its in-tree
shape, acquiring Sexp a maximum value of 12.20 with
48 database divisions.

Despite the factors explained above, the optimiza-
tion represented about 50% of speed-up gain. The
20 speed-up value couldn’t be reached because of the
Grid’s inherent nature, represented by the number of
reschedules (shown at Table 2). On the other hand, the
improvement was also reflected on the level completion
mean times, shown at the same Table.

Even if replication heuristics provide efficiency to
this workflow execution, its cost should be taken into
account. Depending on the number of database divi-
sions, we may find different average transfer and ex-
ecution times associated to the two discarded tasks
(replicated tasks which are killed or do finish before
the framework decides to kill them). For 32 divisions,
discarded tasks consumed an average of 45 seconds of

Table 2. Number of jobs rescheduled in each
experiment with optimization (3CP) and with-
out (Normal) and mean times (considering
Tcpu, Txfr, Tqueue and task reschedules) for
each algorithm level completion.

Divisions Reschedules Mean Times
Norm. 3CP Norm. 3CP

32 69 34 16.3’ 14.7’
40 170 35 14.6’ 11.7’
48 68 27 14.8’ 12.1’

Txfr and 5 minutes 16 seconds of Tcpu. For 40 divi-
sions, 30 seconds of Txfr and 3 minutes 51 seconds of
Tcpu. Finally, for 48 divisions, they consumed an aver-
age of 25 seconds of Txfr, and 2 minutes 55 seconds of
Tcpu.

Consequently, we may define the cost of replication
as the sum of the times mentioned before. The cost for
32 divisions was 8 hours 6 minutes. For 40 divisions,
7 hours 25 minutes. Finally, for 48 divisions, it was 7
hours 55 minutes. We may consider however the worst
case for discarded tasks, which is to execute them on
the slowest computing resource, employing the lowest
bandwidth for data transfers. From here, an upper-
bound for replication cost can be estimated. For 32
divisions, this value is 32 hours. For 40 divisions, 28
hours. At the end, for 48 divisions, it is 49 hours.

In any case, we would like to note that the additional
computational effort mentioned before was performed
by spare resources. Therefore, without harming the
performance of other Grid applications.

6 Conclusions and Future Work

Grid’s inherent nature derives in high queuing times
and fault rate. This makes the Grid to be an unfeasible
solution for many workflows execution. In this contri-
bution we have reviewed three approaches to optimiza-
tion techniques. Then, we focused on one of them for a
specific type of workflow in order to minimize the effect
of the issues addressed before.

Experimental results show that using the replication
technique derived in a valuable speed-up. However,
this speed-up was limited by different factors. Firstly
and due to scheduling restrictions, the number of si-
multaneous running jobs was 20. Then, the algorithm’s
shape made the level of parallelism decrease. Finally,
the Grid’s nature itself derived in reschedules due to
suspension timeouts and execution errors.
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Studying the experimental impact of this optimiza-
tion strategy is only the beginning. We intend to com-
pare the replication variants and then, apply the ag-
glomeration strategy. With these steps it is our idea to
perform a further evaluation of optimization techniques
that could be applied to this particular workflow.
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