
The Indeterministic Behavior of Scoped Memory in Real-Time Java*

M. Teresa Higuera- Toledano
Fecultad Informaim, Universidad Cornplutense de Madrid, Ciudad Universitaria, 28040 Madrid Spain

Ernail: rnthiauer@dacva.ucm,e~

Abstract
The memory model used in the Real-Time

Specz3cation for Java (RTSJ) includes both a heap
within a traditional garbage collectol: which collects
the not used objects, and a new memoly management
feature based on scoped memoly areas. The scoped
memory areas model allows programmers to ensure
constant-time reclamation thus to have predictable
pe$ormance. In order to maintain the pointer safety of
Java RmJ imposes strict assignment rules to or fiom
memoty areas preventing the creation of dangling
pointers, at the cost of an unfamiliar programming
model. The guide lines given by RTSJ to implement the
assignment rules also increase the program complexity;
more over, makes indeteminist the program behavior.
In order to sobe theseproblem, we propose to redefine
some RTSJ rules.

Keywords: Real-tkne Java, Scoped-regions, Single parent
rule, Illegal assignments, Garbage collection, Write-
barriers.

1. Introduction

The Real-Time Specwcation for Java (RTSJ) 11 11 allows
us to use the Java environment in the construction of
real-time systems. The interdependence between
functional and real-iime semantics of real-time software
makes its maintenance especially mcult. In addition,
embedded soRware systems are not portable as they
depend on the particular underlying operating system
and hardware architecture. The Java environment
provides attributes that make it a powerful platform to
develop embedded reaLtime applications. Since
embedded systems normally have limited memory, an
advantage that Java presents is the small size of hoth the
Java runtime environment and the Java application

programs. Dynamic l o a m of classes facilitates the
dynamic evolution of the applications embedded in the
system. Additionally, the Java platform provides classes
for building multithreaded applications and automatic
garbage collection. However, it does not guarantee
determinism nor bounded resource usage, which this
type of systems needs.

In order to solve the shortcomings of Java regarding
its use for embedded real-time programming some
solutions are been proposed. In [5] , we review the
proposed real-time Java solutions, considering and
analyzing the following ededded real-time issues: f)
Solutions to access the underlying hardware. ii) What is
the most adequate model for real-time thread scheduling,
i i i) How to solve the priority inversion problem, iv) How
to generate and handle asynchronous events, v) How to
m g e resources. And vi) how to modify the garbage
collection in mdet to make it compatible with reaLtime
tasks execution. From our point of view, RTSJ [l l]
constitutes the most adequate solution for reaktjme
systems, which use in mission critical system are
cwrently been evaluated in a number of projects such as
131.

RTSJ covers well all aforementioned features, in
particular, the memory model includes both a heap with a
traditional garbage collector, and a new memory
management feature based on scoped memory areas.
From a real-time perspective, the garbage collector
introduces unpredictable pauses that are not tolerated
by real-time tasks. Real-time collectors eliminate this
problem but introduce a high overhead. The scoped
memory areas model allows programmers to ensure
constant-time reclamation thus to have predictable, at
the cost of its explicit management which affects
particularly how programs are written.

Because scoped areas can be reclaimed at any time,
objects within a memory area with a longer Ifetime are
not allowed to create a reference to an object within
another area with a potentially shorter lifetime. An RTSJ

* Founded by the Ministerio de Ciencia y Tecnologia of Spain (CICYT); Grant Number TIC200341321.

6561-4244-0212-3/06/$20.00/©2006 IEEE

implementation must enforce these scope checks before
executing an assignment. In order to do that, RTSJ
establishes a parentage relationship hetweenthe scoped
memory areas; which is called the sinzle-parent rule. To
enforce the RTSJ imposed rules, a compliant JVM must
assure both the single parent rule and the assignment
rules. The suggested RTSI implementation requires
checking the single parent rule on every attempt to enter
a scoped memory area, and to explore the scope stack on
every attempt to create a reference. Since objects
references occur frequently, it is important to implement
checks for assignment rules efficiently and predictably.

In this paper, weavoid the exploration on the scope
stack, by replacing it by a name-based technique making
the enforcement of memory references timepredictahle,
because it does not depend of the nested level of the
area to which the two objects of the memory reference
belong. In order to do that, we propose to base the
parentage relation of memory areas on the way they are
createdcollected, instead on the way they are
enteredexited by tasks such as the RTSJ suggests.
More over, we avoid checks on every attempt to enter a
scoped memory area.

1.1 Related uork

The main contribution of our approach is to introduce a
name-based solution for illegal assignments, which avoid
the exploration of the scope stack as suggest the current
RTSJ. This solution is a direct consequent of the work
presented in [7], which shows how all the necessary run
time checks can be performed in constant time by
simplifying the scoped memory hierarchy. This allows us
to use a namehased encoding to implement dynamic
scope checks, and also to avoid the single~arent rule
checks. In [I21 we present a study of the behaviour of
the RTSI simple parent rule and a first approach in order
to change the parentage relation of scoped memory
areas, avoiding its checks when entering a scoped area.

The work presented in [I] introduces a display-
based technique to support RTSJ scoped area and to
check illegal assignments. An alternative technique to
subtype test in Java have been presented in [lo], which
has been extended to perform memory access checks in
RTSJ. Another solutions tray to maintain statically the
RTSJ invariants such as [9] and [13]. However, the
dynamic issues that Java presents, requires some cases
to check the assignment rules at run-time. However,
static and dynamic techniques can be combined to
provide more robustness and predictability of RTSJ
applications.

1.2 Paper Organization

The paper is organized as follows. Section 2 presents an
in depth description of the semantics of the RTSJ
memory model, being centred in the scoped memory
areas and its relations, giving sufficient details about the
subtleties of this model. Section 3 introduces an
alternative solution to improve the RTSJ suggested
memory model implementation, which is based on the
identifier of memory areas and includes a new point of
view in the way to understand the RTSJ memory area
relationships, particularly the single-parent rule. Section
5, fmally,concludes this paper.

2 The RTSJ mmory mdel

Implicit garbage collection has always been recognized
as a beneficial support from the standpoint of promoting
the development of robust programs. However, this
comes along with overhead regarding hoth execution
time and memory consumption, which makes (implicit)
garbage collection poorly suited for small-sized
embedded real-tie systems. This must not lead to
undertake the unsafe primitive solution that consists in
letting the application programmer to explicit deal with
memory reclamation. An alternative approach is to use
memory regions within which hoth allocation and de-
allocation are customized, also space locality is
improved. Such a facility is supported by RTSJ through
the introduction of thee kinds ofregions, called memory
areas.

2.1 The memory areas model

The RTSJ introduces memory regions and allows the
implementation of real-time compliant collectos to be run
within regions except within those associated with hard
timing constraints. The MernoryArea abstract class
provides three kinds of regions having different
properties in term of both the object lifetimes and the
object allocatiodde-allocation timing guarantees:

i) Immortal memory areas contain objects whose life
ends only when the IVM terminates and are never
garbage collected.

ii) Scoped memory areas, supported by the
ScopedMernory abstract class, enables grouping objects
having well-defined lifetimes. Scoped areas are collected
when there is not a thread using the area, and may either

657

offer temporal guarantees or not on the time taken to
create objects.

iii) The garbage collector within the heap must scan all
objects allocated within immortal or scoped memory
areas for references to any object within the heap in
order to preserve the integrity of the heap. RTSJ further
defines the Garbageco l l ec to r abstract class, which
can be customized through an incremental collector
allowing the application to execute while the collector
has been launched.

Each memory area is then managed to embed objects that
are related regarding associated lifetime and reaLtime
requirements. Particularly, objects allocated within
immortal memory areas live until the end of the
application and are never subject to garbage collection.
Objects with limited lifetime can be allocated into a
scoped area or the heap. Garbage collection within the
application heap relies on the (real-time) collector of the
JVM.

2.2 The task model

RTSJ makes distinction between three main kinds of
tasks: i) low-priori1.y that are tolerant with the garbage
collector, ii) Iiigh-priori1.v that cannot tolerate
unbounded preemption latencies, and iii) critical that
cannot tolerate preemption latencies. Then, RTSJ
introduces two new kind of thread; both are reaLtime
threads. Nevertheless, the latter is protected from the
collector delays, whichcan come about for two reasons:

The collector is invoked during the exemtion of a
real-time thread as consequence of memory
allocation.
The collector is running and must anive to a point
where all data structures are in a consistent state to
be preempted by a high-priority task breemplion
latency), which can be also cause he inversion
priority problem.

In RTSl critical tasks avoids both problems by running at a
higher priority than the collector does, also they are not
allowed to access heap allocated objects (i.e., critical
tasks do not cause heap allocation and do not require
heap allocated objects). An application can allocate
memory into memory areas, as follows:

i) Low-priority task or traditional threads can allocate
memory only withim the traditional heap.

ii) High-priority tasks or real-time threads may allocate
memory within the heap or within a memory area other
than the heap by making that area the current allocation
context (e.g., by entering the area).

iii) Critical tasks or non-heap real-time threads must
allocate memory from a memory area other than theheap
by making that area the current allocation context.

A new allocation context is entered by calling the
MernoryArea.enter 0 method orby starting a reaLtime
thread whose constructor was given a reference to a
memory area. As an example, Figure 1 shows a reaLtime
thread called rnyTask (lime 13), which allocates an array of
10 integers within the heap (line 5), and another of 20
integers in the scoped memory area called rnyRegion. Once
a memory area is entered (line 15). subsequent uses of
the new keyword, within the program logic, will allocate
objects from the memory context associated to the
entered area (line 6). When the area is exited, subsequent
uses of the new operation will allocate memory from the
area associated with the enclosing scope

1: impon javaxreallime;
2:
3: class Aliocator implements Runnable (
4 : public void run0 (
5: HeapMemory.instanceO.newAriay(lnleger, 10);
6: inlll x = new inll201;
7: 1
8:)
9:
10: class RegionUseExample (
11: public slalic void main (Pringll args) (
12: SmpedMemory myRegion -new VTMemory(lO24. 2'1024):
13: Realtimelhread mylask = new ReaitimeThread(nul1. null.
14: new MernoryParame1ers(l024.0).
15: myRegion, null.
16: rew AllocalorO):
17: m yTasn.s~anO:
18: 1
19: 1

Figure 1: UsingRTSJ memory regions.

2.3 Thescoped memory areas

Scoped regions may m may not be subject to internal
real-time garbage collection depending on their temporal
properties. However, since RTSl does not impose the
collection of objects within scoped regions, we consider
in this paper that scoped regions are never garbage

658

collected. Since objects within immortal and scoped
areas are not garbage collected, they may be exploited by
critical tasks. A scoped region gets collected as a whole
once it is no longer used. The lifetime of objects
allocated in scoped areas is governed by the control
flow. Strict assignment rules placed on assignments to or
from memory areas prevent the creation of dangling
pointers (see Table 1).

Table I: Assignment rules in RTSJ.
An implementation solution to ensure the checking of
these rules before each assignment statement consists of
performing it dynamically, each time a reference is stored
in the memory (i.e., by using witebamers). This solution
adversely affects both the performance and predictability
of the RTSJ application.

2.4 The single parent rule

Scoped areas can be nested and each scope can have
multiple sub-scopes. Several related threads, possibly
real-time, can share a memory area, and the area must be
active until at least the last thread has exited. When no
active threads within the scoped area, the entire memory
assigned to the area can be reclaimed along with all
objects allocated within it. The RTSJ suggested
implementation associates to each real-time thread a
scope stack containing all the areas that the thread has
entered but not exited.The structure of enclosing scopes
(i.e., the scope stack) is accessible through a set of
methods on the RealtimeThread class, which allows
outer scopes to be accessed like an array. h order to
maintain the scope stack contain all nested scoped areas
that a thread can hold, RTSJ establishes the single
parent rule:

"'If a scoped region is nor in trse, it has no parent.
For all other scoped objects, the parent is the nearest
scope oirrside it on the current scoped region stack A
scoped region has exoctlv zero or one parent."

The parentage relationship requires that a scoped
memory area has exactly zero or one parent. Scoped
areas that are made current by entering them or passing
them as the initial memory area for a new task must

satisfy the single parent rule. Therefore, the single
parent rule guarantees that a parent scope will have a
Lifetime that is not shorter than of any of its child scopes,
which makes safe references from objects in a given
scope to objects in an ancestor scope, and forces each
scoped area to be almost once in the scope stack
associated with the task.

The singleparent rule also enforces every task that
uses a memory area to have exactly the same scoped area
parentage. Consider two scoped memory areas, A and B,
where the A scoped area is parent of the B area. In such
a case, a reference to the A scoped area can be
referenced from a field of an object allocated in B. But a
reference from a field of an object within A to another
object allocated within B raises the
Il legalAssignment () exception.

Since scoped areas are collected when there is not a
thread using the area, each scoped memory area object
(i.e., each instance of the class ScopedMemory) must
maintain a reference count of the number of threads in
which it is being used. When the reference count for a
scoped area is decreased from one to zero, all objects
within the area are considered unreachable and are
candidates for reclamation.

3 The name-based solution

We suppose that the most common RTSJ useof a scope
area is repeatedly to perform the same computation in a
periodic task. In the current RTSJ, when a task or an
event handler tries to enter a scoped area S, we must
check if the corresponding thread has entered every
ancestor of the area S in the scoped area tree. Then,
safety of scoped areas requires checldng both the set of
rules imposed on their entrance and the aforementioned
assignment rules. Both tests require algorithms, the cost
of which is linear or polynomial in the number of memory
areas that the task can hold. In order to optimize the
RTSJ memory model, we suggest simplifying data
structures and algorithms, and propose to change the
definitionofthe single parent rule.

3.1 Theindeterminismof single parent rule

The implementation of the single-parent rule as suggests
the current RTSJ edition [l l] makes the behavior of the
application nondeterministic. In the guidelines given to
implement the algorithms affecting the scope stack (e.g.,
the enter (I mthod), the single parent rule guarantees
that once a thread has entered a set of scoped areas in a
given order, any other thread is enforced to enter the set
of areas in the same order. Consider three scoped areas:

659

A, B, and C, andtwo task 21 and22. Where task 21 tries

to enter the areas as follows: A, B, and C, whereas 22
tries to enter the areas in the following order: A, C and B.
Let us suppose that task 21 has entered areas A and B,

and task 22 has entered areas A and C. Iftask 21 tries to

enter the area C(see Figure 2.a) or task 22 tries to enter
the area B (see Figure 2.h), the single parent rule is
violated and as consequence the
Scopd.ycleException () throas.

a. TI violates the singleparent rule.

m
b. rZ violates

Scope SPofrl

the singleparent
A
rule.

Figure 2: Violating the single parent rule.

Moreover, iffor example, 72 enters the area C before 71

tries to enter it, then it is T2 which violates the single
parent rule and raises the ScopedCycleException (1

exception (see Figure3.a). However, if21 enters the area

B before 22 tries to enter it, 22 violates the single parent
rule raising the ScopedCycleExcept ion (1 exception
(see Figule 3.h). Notice that determinism is an important
requirement for real-time applications.

a. rl violates the single parent rtrle.

b. d violates the single parent nrle.

Figure 3: Example ofnon-deterministic situation.

3.2 The proposed parentage relation

In order to solve the indeterminism problem introduced
by scoped memory in RTSJ, we redefine the single parent
rule as follows:

'The parent of a scoped area is the area in which
the object representing the scopedarea is allocated"

Then, we propose to base the parentage relationship on
the way that scoped areas are created, instead of the
order in which scoped areas have been entered by
threads such as in RTSJ. In order to do that we suggest
take into account the following modifications [7]:

i) The parentage relation of areas implies to maintain
only a scope Pee structure, which is shared by all real-
time thread of the application; instead to maintain a
scope stack for each real-time thread, as the current
edition of RTSJ sugges t.

ii) The ScopeaMemory class contains the
getouterscope0 method, which allows us to know,
for the current task, the memory area which is prior to
entering the current area (i.e., its ancestor). This rule was
in the former edition of RTSJ , hut not in its current
edition. Note that in the current RTSJ specification, this
method belongs to the RealTimeThread class (see
Section 2).

iii) Each instame of the class ScopedMemory or its
subclasses must maintain a reference count of the
number of real-time threads having it as current area
(task-carinter), and also a reference count ofthe number
of scoped areas created within the area (children-
counter). Note that the current RTSJ specification
maintains only a reference counter for real-time threads
using the scoped area (i.e., the task-counter). Then, we
maintain this reference counter and also we add another
reference counter for the children of the memory area.
When both task and child reference counters for a
scoped memory reach zero, the scoped area is a
candidate for reclamation.

3.3 The determinism of our proposed solution

Consider three scoped areas: A, B, and C, which have
been created in the following way: the A area has been
created within the heap, the B area has been created
within the A area and the C area has been created within
the B area. That means that the heap was the current area
when creating the A object, A was the current area when
creating the B object, and B was the current area when

660

creating the C object. In this way, the creation of the A,
B, and C scoped areas gives the following parentage
relation: the heap is the parent of A, the area A is the
parent of B, and B is the parent of C Then, the child-
counter for A and B has been incremented to one,
whereas for C it is zero.

Let us further consider the two tasks TI and d of our
previous example, where we have supposed that task r l
has entered areas A and B, which increases by I the
task-counter for A and B. Moreover, task 52 has entered
areas A and C, which increases by one the task-counter
for A and C (see Figure 4.a). In this situation, the task-
counter for A is two, whereas for B and C is one. Iftask
rl enters the area C and task 52 the area B, at different
fromthose that occur in RTSJ [11],the single parent rule
is not violated. Then, instead of throwing the
ScopedCycleExceptionO, we have the situation
shown in Figure 4.6. At this moment, the taskcounter for
scoped memory areas A, B, and Care hvo.

references from ohjects allocated within B or C to ohjects
within A are allowed. Note that it is not possible for task
rl create a reference from an ohject within B to an ohject
within C, and vice-versa from an object within B to an
ohject within C, even if taskrl must exit the area C before
to exit the area B. Then, if a task 52 enters into scoped
area C and stays there for a while, task TI leaves C and
leaves B, the scoped area B can be collected and there
are not dangling pointers.

- Scope SP of r2

a. zl enters B scopedarea and d enters C

3.3 Checking the assignment rules

a. TI enters B area. b. TI enters C area.

Fi811re 5: Two state for the eoped staek of task TI.

Non-scoped areas (i.e, the heap and immortal areas) are
not supported in the scoped tree. Moreover, the heap
and immortal areas are considered as the primordial
scope, which is considered the root of the scoped tree
[2]. Notice that, for the heap and immortal memory areas,
there is no need to maintain the referencezounters
because these areas exist outside the scope of the
application. As we can show, our proposed
implementation of the parentage relation introduces great
advantages because i) simplifies the semantic of scoped
memory as the single parent rule becomes trivially true,
ii) scope cycle exceptions do not occur, and iii) the
parentage relation does not change during the scoped
memory life.

6. TI enters C scopedarea and d enters B.

Figure 4: The scope stackand the single parent rule.

Note that the scoped stack associated to t a s k d includes
only the A and B scoped areas. Then, even if the task 52
has entered the scoped memory C before entering B,
pointers from ohjects allocated in B to ohjects allocated
in C are dangling pointers, as consequence they are not
allowed.

We consider another situation: task ?I enters into
scoped area A and creates B and C, which increases its
taskcounter by one and its childcounter by two,
whereas the taskcounter and the child-counter ofboth B
and C are zero. Then, task TI enters into scoped areas B
(Figue 5.a) and C (Figure 5.b), which increases by 1 the
task-counter of both R and C. In this situation, only

Since assignment rules cannot he fully enforced by the
compiler, some dangling pointers must he detected at
runtime p]. The more basic approach is to take the
advice given in the current edition of the RTSJ
specification [Ill. That is to introduce a code to exploll:
the scope stackassociated to the current task, in order to
verify that the scoped area from which the reference is
created was pushed in the stack before than the am to
which the referenced ohject belongs. This approach
requires the introduction of write bamers; that is to take
actions in eachstore operation. Note that the complexity
of an algorithm, which explores a stack, is O(n), where n
is the depth of the stack.

Since real-time applications require putting
boundaries on the execution time of some piece of code,
and the depth of the scoped area stack associated with
the task of an application are only known at runtime; the
overhead introduced by write harriers is unpredictable.

661

In order to fix a maximum boundary or to estimate the
average write barrier overhead, we must limit the number
of nested scoped levels that an application can hold [6].

As stated the RTSJ imposed assignment rules,
references can always be made from objects within a
scoped memory to objects within the heap or immortal
memory; the opposite is never allowed. The ancestor
relation among scoped memory areas is defined by the
nesting areas themselves. Since in our proposed
implementation, the parentage relation changes at
determined moments (i.e., when creating or collecting a
scoped area) we can usea name-based technique, which
facilitates constant-time checking for the assignment
rules. The management of memory areas lames only
requires to copy the parent name and to include the new
created area identifier at the end of it when creating a
scoped area, and to invalidate it when the area is
collected. Consider three scoped areas: A, B, and C with
the following parentage relation: the heap is the parent of
A, the area A is the parent of B, and B is the parent of C.
Then, the name of the area A is 'A', the name of area B is
'AR', and the name of the area C is ' A R C (see Figure 6).

Our parentage relation is less dynamic than in the
current RTSJ edition, where the parent<hildrelationship
changes as scoped memory areas are entered and exited.
In our solution, the parent-child relationship only
changes when creating or destroying a scoped memory
area (i.e., when the children reference count increases or
decreases). Then, the structure of the scope tree is not
affected, when enteringlexiting a memory area or
creatingldestroying a thread.

Figure 6: Memoryarea tree structure.

Figure 7 shows the pseudocode that we must introduce
in the execution of each assignment statement (e.g.,
x.a=y) to perform the assignment checks in constant-
time.

wrie berrii
X - name of me region to which the x objm belongs:
Y - namedme region to which they object belongs;
if ((Y an3 X) <> Y)) illegalAssignmenr0: 1

Figure 7: Checking the assignment rules.

4.3 Estimating the write barrier overhead

We consider that the time cost to detect illegal
assignments is a fraction of the total program execution
time. Then, to obtain the overhead that write barrier
introduces, two measures are combined, the number of
events, and the cost of the event.All the objects created
in Java are allocated in the heap (i.e., dynamic memory
that in RTSJ may be within either the heap or another
memory area); only primitive types are allocated in the
runtime stack 141.

In most applications of the SPECjvm98 benchmark
1121, less than half (i.e., 45%) of the references are to
objects within the heap rather than primitive types (e.g.,
bytes or integers), the other half is to either the Java or
the native stack (see Table 2). We also notice that about
35% of the total executed hytecodes requires an object
reference, where typically 70% is for load operations and
30% for store operations. Then, 15% (i.e, 0.45*0.35) of
the bytecodes reference an object within the heap, where
10% (i.e, 0.15*0.30) of the hytecodes requires write
baniers avoiding illegal assignments. As a conclusion,
5% i.e, 0.15*0.30) of the executed bytedodes requires
write barrier executions.

Table 2. Memory reference behavior.

We also use an artificial collector benchmark which is an
adaptation made by Hans Boehm from the John Ellis and
Kodak benchmark'. This benchmark executes 262*106
bytecodes and allocates 408 Mhytes. The number of
executed bytecodes performing the write barrier test is
15*106 (i.e., a a s t o r e : 1*106, p u t f i e l d : 6*106,
pu t f i e ld - fas t : 7*106, p u t s t a t i c : 19*106, and

662

pu t s t a t i c - fas t : 0). This means that 5% of executed
bytecodes perform a write banier test, as already
obtained with SPECjvm98 in[8].

l h e wi le bamer cosi is proportional to the number of
executed evaluations. With our proposed solutioq the
overhead introduced to evaluate a condition of the write
hamer test in the KVM is about 16% in each assignment.
Because of this, the average write bamer cost introduced
in an application is only a8%. Nevertheless, the most
important consequence of this approach is that the time
taken to detect an allowed or dangling reference is the
same, and it does not depend on the nested level of the
area to which the two objects ofthe reference belong.

5 Conclusions

The proposed parentage relation of memory areas allow
us to use a name-based technique to check illegal
references, which simplifies the suggested RTSJ
implementation based on a scope stack. Since checks for
illegal references requires actions before each
assignment statement, which adversely affects both the
performance and predictability of the RTSJ application,
our suggested parentage relation results particularly
interesting.

Our proposed solution requires that every scoped
area have two reference counters associated to it. Note
that by collecting areas, problems associated with
referencecounting collectors are solved: the space and
time to maintain two referencecounts per scoped area is
minimal, and there are no cyclic scoped area references.
Note that the introduction of this change in the
parentage relation simplifies the complex semantics for
scoped memoryareas adopted by RTSJ.

References

[I] A. Corsnro and R.K. Cytron. "Efficient Reference
Checks for Real-time Java". ACM SIGPLAN
Conference on Languages, Compilers, and Tools for
Embedded Systems", L C E S 2003.

[2] P.C. Dibble. "Real-Time Java Platform
Programming". hentice Hall 2002.

[3] D. Dvorak, G. Bollella, T. Canham, V. Carson, V.
Champlin, B. Giovamoni, M. Indictor, K. Meyer, A.
Murray, and K Reinholtz. "Project Golden Gate:
Towards ReaCTime Java in Space Missions". The
7th lEEE International Symposium on Object-

oriented Real-time distributed Computing (ISORC).
IEEE 2004.

[4] D. Gay and B. Steensgaard. Stack Allocating Objects
in Java. Technical report, Research Microsoft, 1998.

[S] M.T. Higuera, V. Issamy, M. Banatre, G. Cabillic, J.P.
Lesot, and F. Parain. "Java Embedded Real-Tie
Systems: An Overview of Existing Solutions". In
Proc. of the 3Ih Intemational Symposium on Object-
Chiented Real-Tie Distributed Computing (ISORC),
pages 392-399. IEEE, March 2000.

[6] M.T. Higuera and, V. Issarny "Analyzing the
Performance of Memory Management in RTSJ". In
Proc. of the 5' International Symposium on Object-
Oriented Real-Tie Distributed Computing (ISORC).
IEEE 2002.

[7] M.T. Higuera-Toledano. "Towards an
Understanding of the Behaviourof the Single Parent
Rule in the RTSJ Scoped Memory Model". In Proc.
Of the 10' IEEE Real-time and Embedded
Technology and Applications Symposium (RTAS).
IEEE 2004.

[8] J.S. Kim and Y. Hsu. "Memory System Behaviour of
Java Programs: Methodology and Analysis". In
Proc. of the ACM Java Grande 2000 Conference.

[9] K. Palacz and J. Vitek. "Java Subtype Tests in Real
Time" In Proc of 1 7 ~ European Conference for
Object-Oriented hogramming (ECOOP) 2003.

[lo] The Real-Time for Java Expert Group. "Real-Time
Specification for Java". Addison-Wesley,2000.

[I I] The Real-Time for Java Expert Group. "Real-Time
Specification for Java". RTJEG 2002.
http://ww.rtj.org

[I21 Standard Performance Evaluation Corporation: SPEC
Java Virtual Machine Benchmark Suite.
http:liwww.spec.org/osg/jvm98, 1998.

[I31 T. Zhao, J.Nohle, and 1. Vitek. "Scoped Types for
Real-Time Java", In Proc of 25' IEEE International
Real-Time Systems Symposium(RTSS) 2004.

663

664

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

