
Towards a Revision of the Single Parent Rule in Real-Time Java,
Maintaining the RTSJ Programming Model∗

M. Teresa Higuera-Toledano
Facultad Informática, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid Spain

Email: mthiguer@dacya.ucm.es

∗ This research was supported by Consejería de Educación de Comunidad de Madrid, Fondo Europeo de Desarrollo Regional (FEDER) and Fondo

Social Europeo (FSE), through BIOGRIDNET Research Program S-0505/TIC/000101, and by Ministerio de Educación y Ciencia, through the
research grant TIC2003-01321.

Abstract
The memory model used in the Real-Time

Specification for Java (RTSJ) offers real-time guaranties
to time-critical tasks by tuning of the Garbage
Collector, providing as alternative to the garbage
collected heap immortal and scoped memory regions. In
order to avoid cycles among objects allocated within
different scoped memory regions, the single parent rule
guarantees that once a real-time thread has entered a
set of scoped regions in a given order, any other real-
time thread will have to enter them in the same order.
This rule introduces race carrier condition in RTSJ
program execution. This paper addresses two solutions
to this problem that are compliant with the RTSJ
programming model.

Keywords: Real-time Java, Scoped-regions, Single
parent rule, Illegal assignments, Garbage collection,
Write-barriers.

1. Introduction

Implicit garbage collection has always been recognized
as a beneficial support from the standpoint of promoting
the development of robust programs. However, this
comes along with overhead regarding both execution
time and memory consumption, which makes (implicit)
garbage collection poorly suited for small-sized
embedded real-time systems. However, there has been
extensive research work in the area of making garbage
collection compliant with real-time requirements. Main
results relate to offering garbage collection techniques
that enable bounding the latency caused by the
execution of garbage collection.
 A classical technique is incremental garbage
collection [1], which enables the interleaved execution
of the garbage collector with the application. The
generational garbage collection strategy enables
minimizing the overhead caused by garbage collection.
However, this not optimize for worst-case time latency
that is the goal of collectors for real-time systems.

Another technique is region-based memory allocation
[8], which enables grouping related objects within a
region. Commonly, regions are used explicitly in the
program code (see Figure 1).

1: void f ()
 2: {
 3: region r = newregion();
 4: for (i = 0; i < 10; i++) {
 5: int *x = ralloc (r, (i+1)*sizeof(int));
 6:
 7: }
 8: deleteregion(r);
 9: }

Figure1. An example of region-based allocation.

Note that the two above collection strategies are
complementary: incremental garbage collection may be
used within some regions in order to limit their size,
while the use of regions allows reducing the runtime
overhead due to garbage collection. Application of the
above strategies has been studied in the context of Java,
which is in particular highlighted by the Real-time
Specification for Java (RTSJ) [9] which introduces the
concept of scoped memory regions to Java.
 RTSJ introduces memory regions and allows the
implementation of real-time compliant garbage
collectors to be run within regions except within those
associated with hard timing constraints. RTSJ memory
regions have different properties in terms of both the
object lifetimes and the object allocation/de-allocation
timing guarantees. Particularly, immortal memory
regions are never garbage collected, and scoped memory
regions are collected when there is not a real-time thread
using the memory region. The garbage collector within
the heap must scan all objects allocated within immortal
or scoped memory regions for references to any object
within the heap in order to preserve the integrity of the
heap.

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

 Because scoped regions can be reclaimed at any
time, objects within a region with a longer lifetime are
not allowed to create a reference to an object within
another region with a potentially shorter lifetime. An
RTSJ implementation must enforce these scope checks
before executing an assignment. A possible solution is
to perform these checks dynamically, each time a
reference is stored in the memory (i.e., by using write
barriers).
 We have organized the paper as follows: we first
present an in depth description of the RTSJ memory
model (Section 2). We analyze the scoped cycle
exception, which throws when entering a scoped region
that is jet on the scope tree (i.e., the region has been
entered in a different order, then it have another parent)
(Section 3). Then, we present a solution avoiding the
scope cycle exception when the new parent is not in the
same scope stack (Section 4). We provide an outline of
the state of the art and related work (Section 5). Finally
a summary of our contribution conclude this paper
(Section 6).

2. The RTSJ memory model

The MemoryArea abstract class supports the region
paradigm in RTSJ through the three following kinds of
regions: (i) immortal memory, supported by the
ImmortalPhysicalMemory and the
ImmortalMemory classes, that contains objects whose
life ends only when the JVM terminates; (ii) (nested)
scoped memory, supported by the ScopedMemory
abstract class, that enables grouping objects having well-
defined lifetimes and that may either offer temporal
guarantees (i.e., supported by the LTMemory and
LTPhysicalMemory classes) or not (i.e., supported by
the VTMemory and VTPhysicalMemory classes) on
the time taken to create objects; and (iii) the
conventional heap, supported by the HeapMemory class.
In the following, we study how these memory regions
are used by a real-time application.

2.1. The memory model behavior

There is only one object instance of the heap and the
immortal region in the system, which are resources
shared among all threads in the system and whose
reference is given by calling the instance() method.
In contrast, for scoped and immortal physical regions
several instances can be created by the application. An
application can allocate memory into the system heap,
the immortal system memory region, several scoped

memory regions, and several immortal regions
associated with physical characteristics.
 Several related real-time threads, can share a
memory region, and the region must be active until at
least the last thread has exited. The default memory
region is either the heap or the immortal memory region.
Also, the initial default memory allocation area of a real-
time thread can be specified when the thread is
constructed.
 The active region associated with the real-time thread
change when executing the enter() method, which is the
mechanism to activate a region. This method associates
a memory area object to a real-time thread during the
execution of the run() method of the object passed as
parameter. Also, a real-time thread can allocate outside
the active region by performing the newInstance() or the
newArray() methods.

2.3. The scoped region parentage relation

Some of semantics and requirements that RTSJ
establishes across classes supporting memory regions
[9] relate to the parent of a scoped region and the single
parent rule. These requirements establish a nested order
for scoped regions and guarantees that a parent scope
will have a lifetime that is at least that of its child
scopes. Every push of a scoped memory region on a
scope stack requires checking the single parent rule; this
enforces the invariant that every scoped memory area
has no more than one parent. The parent of a memory
region (i.e., a memory area) is identified by the
following rules (for a stack that grows up) [9], [2]:

• “If the memory area is not currently on any scope
stack, it has no parent.”

• “If the memory area is the outermost (lowest)
scoped memory area on any scope stack, its parent
is the primordial scope.”

• “For all other scoped memory areas, the parent is
the first scoped memory area outside it on the scope
stack.”

• “Except for the primordial scope, which represents
heap, immortal and immortal physical memory,
only scoped memory areas are visible to the single
parent rule.”

“The operational effect of the single parent rule is that
when a scoped memory area has a parent, the only legal
change to that value is to "no parent". Thus an ordering
imposed by the first assignments of parents of a series of
nested scoped memory areas is the only nesting order
allowed until control leaves the scopes; then a new
nesting order is possible. Thus a schedulable object
attempting to enter a scope can only do so by entering in
the established nesting order.”

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

In RTSJ, the single parent rule is enforced effectively
considering a tree with the primordial scope (i.e., the
heap, immortal, and immortal physical memory) at its
root, and other nodes corresponding to every scoped
memory region that is currently on any real-time
thread’s scope stack. Each scoped region has a
reference to its parent memory region, ma.parent. The
parent reference may indicate a specific scoped memory
area, no parent, or the primordial parent.
 The code of Figure 2 shows the guidelines that RTSJ
gives to maintain the scope tree and ensure that push
operations on the scope stack of a real-time thread do
not violate the current RTSJ single parent rule. The
ma.parent is set to the correct parent or to noParent,
t.scopeStack is the scope stack of the current real-
time thread, findFirstScope is a convenience
function that looks down the scope stack for the next
entry that is a reference to an instance of
ScopedMemoryArea.

if ma is scoped
 parent = findFirstScope(t.scopeStack)
 if ma.parent == noParent
 ma.parent = parent
 else if ma.parent != parent
 throw ScopedCycleException
 else
 t.scopeStack.push(ma)

findFirstScope(t.scopeStack) {
 for s = top of scope stack to bottom of scope stack
 if s is an instance of scopedMemory
 return s
 return primordial scope

Figure 2. The RTSJ single parent rule.

2.2. Scoped region collection

A safe region implementation requires that a region get
deleted only if there is no external reference to it. This
problem has been solved by using a reference-counter
for each region that keeps track of the use of the region
by threads, and a simple reference-counting GC collects
scoped memory regions when their counter reaches zero.
Before cleaning a region, the finalize() method of
all the objects in the region must be executed, and it
cannot be reused until all the finalizes execute to
completion.
 The reference-counter of a scoped memory region is
increased when entering a new scope through the
enter() method, when creating a RealtimeThread
object using the scoped region, or when opening an
inner scope (i.e., the reference count of all scoped
regions on the current scope stack must be increased).
And it is decreased when returning from the enter()

method, when the real-time thread using the scoped
region exits, or when an inner scope returns from it’s
enter() method (i.e., the reference count of all scoped
regions on the current stack must be decreased).
 When the reference-counter of a scoped region is
zero, a new nesting (parent) for the region will be
possible. Note that it is possible for a scoped region to
have several parents along its live, which results in an
unfamiliar programming model. But, the problem hence
is that the RTSJ single parent rule can result in race
carrier conditions, which gives a non deterministic
behaviour to RTSJ programs.

3. The Scoped Cycle Exception
The single parent rule and the parentage relation among
scoped regions make nondeterministic the behaviour of
the RTSJ programs. As an example, consider two real-
time threads T1 and T2. Where the real-time thread T1
enters regions in the following order: A and B, whereas
T2 enters regions as follows: B and A. The single
parent rule is not violated and the application gives the
correct result in the following cases:
_ _ _

• T1 enters A and B, and exits both regions before T2
enters B and A.

• T2 enters B and A, and exits both regions before T1
enters A and B.

• T1 enters A and B, T1 exits B before T2 enters it,
and T1 exits A before T2 tries to enter it.

• T2 enters B and A, T2 exits A before T1 enters it,
and T2 exits B before T1 tries to enter it.

But the application raises the scoped cycle exception for
four different cases. Then, we found another four several
different behaviours when executing this program:
• If T1enters A and B before T2 enters B, T2 violates

the single parent rule raising the
ScopedCycleException() exception.

• But, if T2 enters B and A before T1 enters A, when
T1 tries to enter A, it violates the single parent rule
and raises the ScopedCycleException()
exception.

Let us suppose that T1 and T2 have entered respectively
the A and B regions and both stay there for a while. In
this situation, the application has two different
behaviours:
• When T1 tries to enter the B scoped region, it

violates the single parent rule.
• When T2 tries to enter the A scoped region, it

violates the single parent rule.
Then the ScopedCycleException() throws by four different
conditions, which makes difficult and tedious the
programming task. Note that each of theses execution

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

cases alternate two parentage relations: A is parent of B
while T1 executes, and B is the parent of A while T2
executes. Assignments form objects allocated within B
to objects within A are allowed when the executing real-
time thread is T1, and are illegal when the executing
real-time thread is T2. Since T1 and T2 alternate their
execution in concurrency, it can produce data race
conditions.

4. Avoiding the Scope Cycle Exception

In order to avoid this problem and to optimize the RTSJ
memory model, we simplify the parentage relation
among scoped memory regions making it local to a task.
This solution simplifies also the algorithms
implementing this rule, but at the cost to complicate the
scoped region garbage collection algorithm.

4.1. Allowing independent cycles

In this subsection, we do not consider the single parent
rule. Taken into account the previous example, where
the real-time thread T1 enters regions in the following
order: A and B, whereas T2 enters regions as follows: B
and A. We found a correct behaviour when executing
this program:
• If T1 enters both regions A and B, and then T2 enters

B, the single parent rule is not violated. Only
references made for the T1 real-time thread from
objects within B to objects allocates within A are
allowed. Note that the reference count of A is 1
(i.e., it is used by the T1 real-time thread) and the
reference-count of B is 2 (i.e., it is used by both the
T1 and T2 real-time threads).

• If T2 enters both regions B and A, and then T1 enters
A, the single parent rule is not violated. Only
references made for the T2 real-time thread from
objects within A to objects allocates within B are
allowed. Note that the reference-count of A is 2
(i.e., it is used by both the T1 and T2 real-time
threads) and the reference-count of B is 1 (i.e., it is
used by the T1 real-time thread).

In this solution, illegal references are known before to
run the program, and there are not race carrier
conditions. If T1 has entered both regions A and B, then
T2 enters also both regions B and A. Only references
made for the T1 real-time thread from objects within B
to objects allocates within A, and references made for
the T2 real-time thread from objects within A to objects
allocates within B are allowed. Note that the reference-
count of both A and B are 2.

• If T1 exits B, the reference-count of B decreases to
1, and only references made for the T2 real-time
thread from objects within A to objects allocates
within B are allowed. Since T2 must exit A before
to exit B, it is sure that B will be collected after
collecting A. Then, there are not dangling pointers.

• If T2 exits A, the reference counter of A decreases
to 1, and only references made for the T1 real-time
thread from objects within B to objects allocates
within A are allowed. Note that T1 must exit B
before to exit A, as consequence there are not
potential dangling pointers.

Considering the above situation, T1/T2 exits A/B, which
decreases its counter to zero and can be collected.

4.2. Making local the single parent rule

As another example, we consider a real-time
thread T1 entering the A and B scoped regions
in the following order: A, B, and A. In this
case, both types of references thus from
objects allocated within A to objects within B
(i.e., X.f = Y), and thus form objects allocated
within B to objects within A (i.e., Y.f = X) are
allowed. The reference count of A has been
incremented two times (i.e., its value is 2);
whereas the reference count of B has been
incremented only one time.
 Since T1 must exits, the regions in the following
order: A, B, and A. If now T1 exits A (i.e., the scope
stack of T1 is compound by AB) there are objects within
the A region that have references to objects within the B
region (i.e., X.f = Y). These references are dangling
pointers, because T1 must exit B before to exit A, at this
moment the object Y is collected. RTSJ present also the
executeInArea() method, which allows to change the
current active region to an entering before region.
 In order to avoid problems with cycles among
regions on the same scope stack, we redefine the single
parent rule in local scope (i.e., the scope stack). Then,
we consider the parentage relation independently for the
scope stack of each real-time thread. Then the parent of
a scoped memory region is identified by the following
rule (for a stack that grows up):

 “If a scoped area is not in use, it has no parent. For
all other scoped objects, the parent is the nearest scope
on the current entered scoped scope stack. A scoped
area has exactly zero or one parent for each scope stack
(i.e., it can appear only one time on a given scope
stack.”

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Note that with this definition of the single parent rule, a
scoped region can have several different parents at the
same time, but only a parent for each real-time thread
(i.e., a scoped region can appear only one time in each
scope stack).
 Considering our previous example, where the T1
real-time thread enters the A and B scoped regions, and
the real-time thread T2 enters the B and A sopped
regions (i.e., the scope stack of T1 is AB, and the scope
stack of T2 is BA); we found that at this moment, both
scoped regions have two different parents:

• The parent of scoped region A is the primordial area
on the scope stack of the T1 real-time thread, and
the region B on the scope stack of T2.

• The parent of scoped region B is the region A on
the scope stack of T1, and the primordial area on
the scope stack of T2.

However, since both scoped regions A an B have only
one parent for each real-time thread, the new single
parent rule is not violated. Then, the behavior of T1 and
T2 execution does not depend on the order that these
real-time threads gains the scoped region resources (i.e.,
there are not race carrier conditions).
 In this solution, the single parent rule can be enforced
effectively considering only the scope stack of the active
real-time thread. This solution does not require that each
scoped region have a reference to its parent memory
region (i.e., ma.parent). More over, considering the
RTSJ tree with the primordial scope (i.e., the heap,
immortal, and immortal physical memory) at its root, a
scoped region can have several parents, but only one for
each branch of the tree (i.e. for each scope stack).
 The code of figure 11 shows the our suggested
implementation to maintain the scope tree and ensures
that push operations on the scope stack of a real-time
thread do not violate the proposed single parent rule.

if ma is scoped
 for s = top of scope stack to bottom of scope stack
 if s == ma
 throw ScopedCycleException
 else
 t.scopeStack.push(ma)

Figure 11. The suggested single parent rule.

Note that this algorithm requires an exploration of the
scope stack, having a complexity of O(n), where n is the
depth of the real-time thread’s scoped stack.

4.3. Avoiding dangling pointers

By making local the single parent rule, we allow cycle
references across memory regions on different stack. Let
us consider the execution on the code given in Figure 3
taken into account our proposed model (i.e., the single
parent rule is considered local). As different that occurs
in RTSJ where the ScopedCycleException() raises,
we can found the following situation (see Figure 9):
Task T1 can create pointers from objects within B to
objects within A, whereas task T2 can create pointers
from objects within B to objects within A. Than means,
it is possible to have cycles references. Then, both
regions A and B must be collected at the same time.
 This solution requires be careful with the scoped
region collection: When the reference-counter of a
scoped region is zero, the scoped region is garbage
collectable only if it is no part of a region cycle. The
code of Figure 12 shows the guidelines to maintain the
data structure ma.cycle, which contains the set of
memory regions that must be collected before to collect
the scope region ma. Instead of the scope stack
associated with each task, here we consider the general
order that scoped regions have been enter by all the
tasks in the system. Note that in the RTSJ VM tasks are
executed in concurrency not in parallel.

if ma is scoped begin
 for s = top of global stack to bottom of scope stack
 if s == ma
 for t = s downto top of globalstack
 if t == is an instance of scopedMemory
 add t to the ma.cycle set

 t.globalStack.push(ma)
endif

Figure 12. Detection of local scoped region cycles.

Note that this solution requires to modify the reference
counter collector by introducing the recursive
collectCycle() function (Figure 13), which detect if
the scoped region that must be collected is part of a
cycle, and in this case if it is possible to collect all the
regions that compound the cycle.

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

if ma.cycle is empty
 make ma garbage collectable
 else
 for s = first of ma.cycle to last of ma.cycle
 if s.referenceCount ==0
 collectCycle(s)

Figure 13. The recursive collectCycle() function.

6. Related work

The main contribution of our approach is to introduce a
modification on the single parent rule definition. This
solution continues the work presented in [5], which
shows how RTSJ programs suffer of race carrier
conditions because the single parent rule. In order to
solve race carrier conditions, in [6] we propose a stricter
parentage relation based on the way that scoped regions
are created, instead on the order that scoped regions are
entered by the real-time threads, which allows us to
eliminate the scope stack. In [7], we introduce
another solution avoiding both the scope stack and
the scoped cycle exception, which also removes both the
assignment rules. These both solutions are time-
predictable. Note than deterministic and time-
predictable execution are important requirements in real-
time systems. At different from the solution presented in
this paper, both these solutions removes the scope stack
and
 the ScopedCycleException(). But, at different
neither of these solutions are compliant with the RTSJ
applications.

7. Conclusions

To enforce the RTSJ imposed rules, a compliant JVM
must check both the single parent rule on every attempt
to enter a scoped memory region, and the assignment
rules on every attempt to create a reference between
objects belonging to different memory regions. Since,
the single parent rule at is defined by RTSJ introduces
race carrier conditions, it is imperative to found
alternatives solutions avoiding this problem.
 The solution that we present in this paper consists in
a simplification of the RTSJ single parent rule, reducing
its application from the global tree of scope stacks to the
current real-time thread’s scope stack. The major
advantage of this solution is that it conserves the
memory model semantic by avoiding data race
problems.

Acknowledgements: This paper has taken into account
some ideas of the student Laura Herraiz, Víctor Parra,
and Gabriel Salafranca.

References

[1] H. Baker. The Treadmill: Real-Time Garbage
Collection without Motion Sickness. In Proc. of the
Workshop on Garbage Collection in Object-
Oriented Systems. OOPSLA’91, 1991. Also
appears as SIGPLAN Notices 27(3), pages 66-70,
March 1992.

[2] P.C. Dibble. “Real-Time Java Platform
Programming”. Prentice Hall 2002.

[3] M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic,
J.P. Lesot, and F. Parain. “Java Embedded Real-
Time Systems: An Overview of Existing
Solutions”. In Proc. of the 3th International
Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC), IEEE, March
2000.

[4] M.T. Higuera-Toledano, V. Issarny, M. Banatre, G.
Cabillic, J.P. Lesot, and F. Parain. "Region-based
Memory Management for Real-time Java". In Proc.
of the 4th International Symposium on Object-
Oriented Real-Time Distributed Computing
(ISORC). IEEE 2001.

[5] M.T. Higuera-Toledano. “Studying the Behaviour
of the Single Parent Rule in Real-Time Java”. In
Procof 2on Workshop on Real-time Java (JTRES),
2004.M.T. Higuera-Toledano. "Towards an
Understanding of the Behaviour of the Single
Parent Rule in the RTSJ Scoped Memory Model".
In Proc. of the 10th IEEE Real-time and Embedded
Technology and Applications Symposium (RTAS).
IEEE 2004.

[6] M.T. Higuera-Toledano. "Towards an Analysis of
Race Carrier Conditions in Real-time Java”. The
14th International Workshop on Parallel and
Distributed Real-Time Systems 2006. IEEE 2006

[7] D. Gay and A. Aiken. Memory Management
Regions. In Proc. of the Conference of
Programming Language Design and
Implementation (PLDI), ACM SIGPLAN, June
1998.

[8] The Real-Time for Java Expert Group. "Real-Time
Specification for Java". RTJEG 2005.
http://www.rtsj.org

[9] Sun Microsystems. “KVM Technical
Specification". Technical Report. Java Community
Process, May 2000. http://java.sun.com.

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

