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Abstract

The memory model used in the Real-Time Specification 
for Java (RTSJ) imposes strict assignment rules to or from 
memory areas preventing the creation of dangling
pointers, and thus maintaining the pointer safety of Java.
An implementation solution to ensure the checking of 
these rules before each assignment statement consists to 
use write barriers executing a stack-based algorithm.
This paper provides a hardware-based solution for both 
write barriers and the stack-based algorithm.

1 Introduction

From a real-time perspective, the Garbage Collector (GC) 
introduces unpredictable pauses that are not tolerated by 
real-time tasks. Real-time collectors eliminate this problem 
but introduce a high overhead. An intermediate approach 
is to use Memory Regions (MRs) within which both
allocation and de-allocation are customized and also the
space locality is improved. Application of these two 
implicit strategies has been studied in the context of Java,
which are combined in the Real-time Specification for Java 
(RTSJ) [3]. RTSJ extends Java to support key features for 
real-time systems such as real-time scheduling and
predictable memory. This paper focuses on how to
improve the performance of a Java memory management 
solution accounting for relevant Java specifications: the 
RTSJ and the KVM [14] targeting limited-resource and
network connected devices, and the picoJava-II [15]
microprocessor.

The MemoryArea abstract class supports the region 
paradigm in the RTSJ specification through the three
following kinds of regions: (i) immortal memory, supported
by the ImmortalMemory and the
ImmortalPhysicalMemory classes, that contains
objects whose life ends only when the JVM terminates; 
(ii) (nested) scoped memory, supported by the
ScopedMemory abstract class, that enables grouping
objects having well-defined lifetimes; and (iii) the
conventional heap, supported by the HeapMemory class.

     An application can allocate memory into the system 
heap, the immortal system memory region, several scoped 
memory regions, and several immortal regions associated 
with physical characteristics. When a new scope is 
entered by calling the enter() method of the instance or 
by starting a new task (i.e., by  instancing a
RealtimeThread or a NonHeapRealtimeThread)
whose constructors where given a memory region. In the 
second case, an object created by the task is  allocated
within memory associated with this scope. When the
scope is exited by returning from the enter() method, all 
objects will allocate within the memory associated with the 
enclosing scope (i.e., the nested outer scope).

Objects allocated within immortal regions live until the 
end of the application and are never subject to garbage 
collection. Objects with limited lifetime can be allocated 
into a scoped region or the heap. Garbage collection 
within the application heap relies on the (real-time)
collector of the JVM. A scoped region gets collected as a 
whole once it is no longer used. The lifetime of objects 
allocated in scoped regions is governed by the control 
flow. Strict assignment rules placed on assignments to or 
from MRs prevent the creation of dangling pointers (see 
Table 1).  Shared scoped regions are used to
communication among real-time threads and normal (non-
real-time) threads.

Table 1. Assignment rules in RTSJ.

The JVM must check for the above assignment rules 
before to execute an assignment statement, and throw an 
illegalAssignment() exception, if they are violated. 
This check includes the possibility of static analysis of the 
application logic [3]. In this paper, we specifically treat the 
issue of dynamic checks for illegal assignment.

Reference
to Heap

Reference
to Immortal

Reference
to Scoped

Heap Yes Yes No
Immortal Yes Yes No
Scoped Yes Yes Same, outer, 

or shared
Local
Variable

Yes Yes Same, outer, 
or shared
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1.1 Related work

Several researches have examined the possibility of 
replacing the Java GC by an adequate stack-allocation
scheme, which is more predictable. Stack-allocation is 
desirable because execution time properties are easier to 
capture than heap allocation. The Tofte-Talpin calculus 
[17] uses a lexically scoped expression to delimit the
lifetime of a region for ML inference systems. Memory for 
the region is allocated when the control enters into the 
scope of the region constructor, and is de-allocated when 
the control leaves the scope. This mechanism is
implemented by a stack of regions where regions are
ordered by lifetimes. The allocation and de-allocation of 
regions is determined at compile time by a type-based
analysis, which consists to annotate in the source
program every expression creating a value with a region 
variable.

As the Tofte-Talpin solution, our solution is based on a 
stack of scoped regions ordered by life-times [10]. Since in 
RTSJ a region can be shared among several threads, this 
solution requires more complex mechanisms because the 
region will remain active until the last thread has exited, 
and this fact makes difficult to determine the de-allocation
of regions at compile time. In [5], we found a region-based
approach to memory management in Java using static
analysis .  As conclusion of this work, fixed-size regions 
have better performance than variable-sized regions, and 
region allocation has more predictable and better
performance that the GC. But, this solution permits the 
creation of dangling pointers. 

Our solution consists to check the imposed
assignment rules preserving dangling pointers
dynamically, just when executing the assignment
statement. In order to do so, we introduce an extra code in 
all bytecodes causing an object assignment. This extra 
code, normally called write barrier must be executed 
before updating the object reference. A similar approach 
given in [4] proposes a contaminated GC based on the 
idea that each object in the heap is alive due to references
that begin in the runtime stack, which uses also a stack-
based memory management that operates dynamically. 
But, this solution collects memory within the heap, and 
does not treat another memory region.

The most common approach to implement read/write 
barriers is by inline code, consisting in generating the 
instructions executing write barrier events for every
load/store operation. This solution requires compiler
cooperation and presents a serious drawback because it 
increases the size of the application object code [19].  This 
approach is taken in [2] where the implementation uses 
five runtime heap checks (e.g., CALL, METHOD,

NATIVECALL, READ, and WRITE) to ensure that a critical 

task does not manipulate heap references. Alternatively,
our solution instruments the bytecode interpreter,
avoiding space problems, but this still requires a
complementary solution to handle native code. 

The use of write barriers and a stack of scoped regions 
to detect illegal inter-region assignments has been
introduced in [7] and developed in [6]. The solution [7] 
minimizes the write barrier overhead by using hardware
support such as the picoJava-II microprocessor [15],
which allows performing write barrier checks in parallel
with the store operation. In [8], we compare and evaluate 
the solutions proposed in [6] and [7]. In [10], we address
problems related to the coexistence of MRs and a real-time
GC within the heap, such as “memory access errors” and 
“real-time invariants” are addressed in detail, as well the 
region-stack maintenance, and the scoped-region
collection.

The aforementioned solutions combine memory regions 
and a real-time GC collecting objects within the heap. As
contrast, in this paper we do-not considerer a real-time GC 
within the heap, we only address illegal assignments.
Then, the solution is simplified. As our major contribution,
we introduce a special hardware to support the region-
stack algorithm detailed in [9], and the way to improve the 
performance of checking for illegal assignments to objects
within scoped regions. Integrating our specialized
hardware support for scoped regions and the write barriers 
hardware support  that picoJava-II provides for
generational GCs , both hardware support can work
together to detect illegal assignments across regions at 
negligible time overhead.

1.2 Paper organization

This paper proposes addresses the problem
associated with inter-region references introduced by 
MRs (i.e., illegal assignment). We first present our basic 
approach, which includes write barriers to detect whether 
the application attempts to create an illegal assignment,
and a description of how scoped regions are supported 
(Section 2). A hardware-based solution to improve the 
performance of write barriers, which reduces the write 
barrier overhead for intra-region assignments to zero, is 
then given (Section 3). Next, we propose a specialized
hardware to support the stack-based algorithm, which
makes negligible the time-cost to detect illegal
assignments across scoped regions (Section 4). We
present basic modifications to the Java VM in order to 
make it compatible with the existence of memory regions, 
and evaluate the overhead introduced by write barriers in 
our solution by instrumenting the KVM (Section 5).
Finally, some conclusions and a summary of our
contribution; conclude this paper (Section 6).
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2 Detecting illegal assignments

A MR implementation must ensure that objects within 
the heap or the immortal memory cannot reference objects 
within a scoped region, and objects within a scoped 
region cannot reference objects within another scoped 
region that is neither non-outer nor shared.  In this 
section, we use write barriers to detect illegal inter-region
assignment at run-time, and a stack-based algorithm to 
check whether a scoped region is outer to another one.

2.1 Checking for inter-region assignments

The basic idea to detect illegal assignments is to take 
actions upon those instructions that cause one object to 
reference another (i.e., by using write barriers):
• The putfield (aputfield_quick) bytecode causes 

a reference from an object X to another one Y to be 
created, and the aastore (aastore_quick)
bytecode stores a reference (Y) into an array of
references (X).

• The putstatic (aputstatic_quick) bytecode
causes a reference from an object (X) within
persistent memory (i.e., an outermost region) to
another object (Y) to be created.

The header of the object must specify both the region to 
which the object belongs and the region type. Then, when 
an object/array is created by executing the new

(new_quick) or newarray (newarray_quick)
bytecode, it is associated with the scope of the active 
region. Local variables are also associated with the scope 
of the active region. 

Figure 1 shows the write barrier pseudo-code, which
must be introduced in the interpretation of the
aforementioned bytecodes. The region() function
returns: heap, immortal, or scoped depending on the 
type of the region to which the object parameter belongs, 
and the shared() function returns true when the region 
to which the object parameter belongs is a shared one.
And the nested(X,Y) function returns true, when the 
region’s scope to which the Y object belongs is the same 
or outer than the region’s scope to which the X object 
belongs.

Figure 1. Write barrier code detecting illegal assignment.

2.2 Checking nested scoped MRs

In order to detect illegal assignments to scoped
regions, every thread has associated a region-stack
containing all scoped MRs that the thread can hold. And 
every scoped region is associated with a reference counter 
that keeps track of the use of the region by tasks. The MR 
at the top of the stack is the active region for the task,
whereas the MR at the bottom of the stack is the
outermost scoped region for the task. The default active 
region is the heap. When the task does no use any scoped 
region, the region-stack is  empty and the active region is 
the heap or an immortal MR. Checking nested regions 
requires two steps.

In a first step, the region-stack of the active task is 
explored, from the top to the bottom, to find the MR to 
which the X object belongs (see Figure 2). If it is not 
found, this is notified by throwing a
MemoryAccessError()exception1.

a. The X region is found.          b. The X region is not found.

   Figure 2. First exploration of the region-stack.

A second step explores the region-stack again,
considering the start of the search the region to which the 
X object belongs, and the objective is to find the MR to 
which the Y object belongs (i.e., the region to which the Y 
object belongs must be outer to the region to which the X 
object belongs). If the scoped region of Y is found, the 
nested(X,Y) returns true (see Figure3).

a. Y  is outer to X . b. Y  is inner to X.

Figure 3. Second exploration of the region-stack.

1 This exception is thrown upon any attempt to refer to an object 
in an inaccessible MemoryArea object.

wrrite_barrier_code

if (region(Y)=scoped)

if (region(X)<>scoped) IllegalAssignment()

else if ((not shared(Y)) and (not nested(X, Y)))

IllegalAssignment();
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3 Using hardware support

In this section, we first present an overview of the 
write barrier hardware support that the picoJava-II
microprocessor [15] provides. Next , we introduce a
hardware-based solution to improve the write barrier
performance of memory regions.

3.1 The picoJava-II write barrier

Upon each instruction execution, the picoJava-II core
checks for conditions that may cause a trap. From the 
standpoint of GC, this microprocessor checks for the
occurrence of write barriers, and notifies them using the 
gc_notify trap. This trap is triggered under certain 
conditions when assigning to an object’s field an object
reference (i.e., when executing bytecodes requiring write 
barriers). The conditions that generate the gc_notify
trap are governed by the values of the GC_CONFIG and
the PSR registers. The GC_CONFIG register governs two 
types of write-barrier mechanism: page-based and
reference-based. Whereas the reference-based write
barriers are used to implement incremental collectors, the 
page-based barrier mechanism was designed specifically 
to assist generational collectors based on the train-based
algorithm [18], which divides the object space into a
number of fixed blocks called cars, and arranges the cars 
into disjoint sets (trains). This algorithm tracks references
across cars within the same train.

3.2 Supporting memory regions

Our solution uses the picoJava-II paged-based
mechanism to detect references across different regions
by mapping each region in a car. If the GCE bit of the PSR
register is set, then page-based write barriers are enable.
The object reference in picoJava-II has 4 fields: GC_TAG,
ADDRESS, X, and H. The ADDRESS field (bits <29:2>) of 
the reference always points to the location of the object 
header. In the GC_CONFIG register, the TRAIN_MASK

field (bits <31:21>) allows us to know whether both
objects in an assignment X and Y belong to the same train,
whereas the CAR_MASK field (bits <20:16>) detects
whether belong to different cars (see Figure 4).

if (PSR.GCE = 1) then

    if ((X<29:19>&GC_CONFIG<31:21>)=(Y<29:19>& GC_CONFIG<31:21>))

and

((X<18:14>&GC_CONFIG<20:16>)<>(Y<18:14>&GC_CONFIG<20:16>))

then gc_notify trap

Figure 4: Page-based write barrier mechanism.

If, for example, we initialize the REGION_MASK field as 
0000000000, and the CAR_MASK field as 11111, we have
only a train divided in 32 cars (regions), each one divided 
in pages of 16 Kbytes (see Figure 5).

Figure 5: Memory map:CAR_MASK with 11111.

The page-based mechanism avoids us to execute the
write barrier code when both objects X and Y belongs to 
the same region (i.e., for intra-region assignments). Then, 
write barriers are executed only for references across 
regions (i.e., for inter-regions assignments). Figure 6
shows the associated exception routine to the gc_notify
trap, which must be executed for inter-region assignments.
Note that spatial locality property means that intra-regions
assignments are more frequent than inter-region
assignments [1]. Then, we improve the performance of our 
solution at least 50%.

Figure 6: Treating the gc_notify trap.

4 The region-stack algorithm in hardware

In order to improve the performance of our solution, we
are interested in reducing the execution time taken to 
check illegal references caused by assignments among 
scoped MRs, which depends on the region stack size. In 
this section we introduce a hardware executing the
nestedRegions(X,Y) function, which supports the
region stack of the active task in an associative memory.

gc_notify _trap_code

if  (region(Y) =scoped )

if  (region(X)<>scoped) IllegalAsignment()

else  if ((not shared(Y)) and (not nested(X, Y)))

IllegalAsignment();

priv_ret_form_trap;
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4.1 Checking nested regions

Similarly to the write-barriers mechanism of picoJava-II
[15], our proposed hardware checks for the occurrence of 
scoped-based write barriers and notify them by using the 
mr_notify trap upon an illegal assignment to an object
within a scoped region. The hardware executing the
region-stack based algorithm, basically consists in an 
associative memory called SCOPED_STACK (Figure 7).

Figure 7: Region-based mechanism for scoped regions.

Each entry of the SCOPED_STACK associative memory 
contains a mark bit, called Present-Bit (P), which indicates
whether the corresponding entry must be considered as 
an element of the region stack. This bit is used in the first 
step of the algorithm, when the region of the X object is 
sought in the region stack. Each entry contains also a 
valid bit called Valid-Bit (V), which indicates whether the 
corresponding entry must be considered at the second 
step of this algorithm, when the region of the Y object is 
sought in the region stack. 

In the following, we describe the behavior of the two 
steps of this hardware-based mechanism, which are
governed by the TEMP signal:

• In a first step (i.e., TEMP=0), the region to which the 
X object belongs is sought in the region stack (i.e., in 
all entries with P=1). If it is found (e.g., at entry n), all 
entries from n to the bottom of the stack are validated 
by setting their V bit.

• In a second step (i.e., TEMP=1), the region to which 
the Y object belongs is sought in the sub-stack
formed by all entries that have been validated in the 

previous step (i.e., all entries with V=1). If it is not 
found, the mr_notify signal activates raising the 
IllegalAssignment()  exception. 

Note that when the bit P is set (P=1), the corresponding 
entry is an element of the region stack of the active task. 
In contrast, when this bit is unset (P=0), the
corresponding entry is considered empty. And when the 
V bit is set, the region of the corresponding entry is outer 
that the region to which the X object belongs (i.e., V=1
means that the X object can reference objects within the 
region). The condition under which the mr_notify trap 
is generated can be governed by a reserved bit in the PSR
register (i.e., the <31:23> bits). If this bit (e.g., the <23> bit), 
which we call Memory Region Write Barrier Enable (MRE),
is set, then scoped-based write barriers are enable. Then,
by unseting this bit, we disable the mr_notify trap.

4.2 Dealing with shared regions

In order to avoid the mr_notify throwing upon
assignments to shared scoped regions, which is  an
allowed condition, we introduce a new associative memory 
(see Figure 8): the SHARED_STACK, which contains all 
shared scoped memory regions. The behavior of this 
mechanism affects only the second step of the algorithm.
In this case, the Y object is soughed in both associative 
memories (i.e., the SCOPED_STACK and the
SHARED_STACK), whether it is not found in neither of the
associative memories and the PSR.MRE bit is set (i.e., 
memory region write barriers are allowed), the
mr_notify signal traps. 

Figure 8: Region-based mechanism for shared regions.
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We consider that the <31:30> bits of the object
reference  are used to specify the type of the region to 
which the object belongs (e.g., 00 for the heap, 01 for 
immortal, 10 for scoped non-shared, and 11 for scoped 
shared). Figure 9 shows the code of the associated
exception routine to the gc_notify trap.      This code, first 
checks for the region to which the Y object belongs, and 
whether it is scoped non-shared enables the introduced 
hardware-based write barrier mechanism.

Figure 9: Code for the gc_notify trap.

Each time a task is scheduled for execution, all entries 
of both memories the SCOPED_STACK and the
SHARED_STACK must be configured respectively with the 
scoped region stack and the shared scoped MRs that the 
scheduled task can access. This configuration introduces
some overhead at context -switch time. In order to
access/configure the SCOPED_STACK (SHARED_STACK)
memory, we extend the picoJava-II instruction set by 
introducing the priv_read_scoped_stack (priv_read_shared_stack) and

priv_write_scoped_stack (priv_write_shared_stack) bytecodes,
which operands are the entry index and a memory address
to load/store the region identifier.

5 Integration within the KVM

 We have modified the KVM [14] to  implement three 
types of memory  regions: (i) the heap that  is collected by 
the KVM GC, (ii)  immortal that is never collected and can 
not be nested, and (iii) scoped that  have limited live-time
and can be nested. These regions are supported by the 
HeapMemory, the ImmortalMemory, and the
ScopedMemory classes. Unlike RTSJ, in our prototype the 
ScopedMemory class is a non-abstract class, and the 
ImmortalPhysicalMemory class has not been
implemented. We have limited to 32 the number of regions. 
We consider that regions are paged, and the page size is 
16 Kbytes. Also, the maximum number of pages that a
region can hold is has been limited to 8. We consider
further that a maximum of 64 tasks can reference objects in 
the same scoped MR.

5.1 Memory footprint

     We maintain a region-structure of 2 words for each 
MR object in the system with the following format:
REGION_TYPE <31:30>, REGION_ID <29:25>,
OUTER_REGION_ID <24:20>, REFERENCE_COUNTER
<19:14>, INITIAL_SIZE <13:11>, MAXIMUN_SIZE <10:8>,

and USED_PAGES <7:0>. Where the REFERENCE_COUNTER,
the INITIAL_SIZE, and MAXIMUN_SIZE fields allow us to 
know respectively: the number of tasks that can allocate or 
reference objects in the region, the initial number of pages 
of the region, and the number of pages that the region can 
hold. The USED_PAGES field is a bitmap indicating the 
pages of the region. If for example the USED_PAGES field 
contains the 00000101 value that means that pages 0 and 2 
of memory compounds the region (i.e., if the REGION_ID
contains the 00000 value, pages 0 and 32 of memory
compounds the region). The region-structure increases 
the memory footprint as maximum of 128 Bytes. Note that 
these region-structures forms a scope-tree [12] where the 
heap is the root and immortal regions are not included.

 In order to adapt the KVM objects to the picoJava-II
microprocessor, we add a word to the object header of the 
KVM. The added word includes the following fields:
REGION_TYPE <31:30> (GC_TAG in picoJava-II) and
REGION_ID <18:14> (CAR_ADDRESS in picoJava-II). Where 
the REGION_ID field specifies the MR to which the object 
belongs, and the REGION_TYPE specifies the region type
(e.g., 00 for the heap, 01 for immortal, 10 for scoped non-
shared, and 11 for scoped shared). This increases a word 
per object the memory consumption. Alternatively, we can 
modify the original header format of KVM objects (i.e.,
SIZE <31:8>, TYPE <7:2>, MARK_BIT <1>, and STATIC_BIT
<0>) to support the identification and type of the region to 
which the object belongs (i.e., REGION_TYPE <31:30>, 
SIZE_H <29:19>, REGION_ID <18:14>, SIZE_L <13:8>,

TYPE <7:2>, MARK_BIT <1>, and STATIC_BIT <0>). Note 
that the maximum size of the object has been reduced from 
16 Mbytes to 512 Kbytes; given the small average object
size that the specJVM [16] applications present (i.e., about 
32 Bytes), we optimize for small objects.

5.2 Worst case for write barrier

Recall that in the first step of the algorithm, the region-
stack is explored from the top to the bottom to find the 
region of the X object. Suppose that the number of
explored levels is x and the region-stack have n levels.  In 
the second step of the algorithm, the region-stack is 
explored from the region found in the previous step (i.e., 
the n-x inner level) to found the region of the Y object. 
Suppose that the number of explored levels is y (i.e., it is 
found at the n-x-y inner level). Since it is evident that n>0,

gc_notify _trap_code

if  (region(Y) =scoped )

if  (region(X)<>scoped) IllegalAsignment()

else  if (not shared(Y)) begin

enable_mr_notify ;

nop;

disable_mr_notify

end;

priv_ret_form_trap
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then x+y<n. We conclude that n is the maximum bound of 
executed evaluations to check whether a region is outer 
than another one.

We have limited the number of scoped nested levels to 
16, which allows us to support the region stack of each 
task in 5 words. Then, the introduced memory footprint is 
not important. The maximum write barrier cost introduced 
per assignment is when exploring the 16 levels of the 
region stack. Note that this cost includes both the
evaluations besides chasing the stack and the evaluations
to explore the stack (i.e., (3+n); n<=16). With this
implementation, the overhead introduced in the KVM to
evaluate a condition of the write barrier test is about 17%
per assignment. This means that when introducing a 
condition in the interpretation of a bytecode causing write 
barriers, we increase 17% the execution time of the
bytecode, and the maximum write barrier overhead per 
assignment is 323%.

Since the introduced hardware minimizes the time cost 
required to explore the stack to the time that picoJava-II
spends to catch a trap, we estimate the maximum write 
barrier cost introduced per assignment as 50%.

5.4 Average write barrier overhead

To obtain the average write barrier overhead, two 
measures are combined: the number of events, and the 
cost of the event. We use an artificial collector benchmark 
which is an adaptation made by Hans Boehm from the 
John Ellis and Kodak benchmark2. This benchmark
executes 262*106 bytecodes and allocates 408 Mbytes.
The number of executed bytecodes performing write
barrier test is 15*106 (i.e., aastore: 1*106, putfield:
6*106, putfield_fast: 7*106, putstatic: 19*106, and 
putstatic_fast: 0) for a total of 262*106 executed
bytecodes. This means that 5% of executed bytecodes
perform a write barrier test, as already obtained with 
SPECjvm98 in [11].

Considering that all the objects in the system have the 
same probability to be accessed, let h, i and s be
respectively the proportion of objects within the heap, an 
immortal region, or a scoped region. Then, we compute the 
average write barrier cost introduced per assignment as: 
0.17((h+i+s)+s(h+s+i)+s*s(1+n/2)). Recall that to
estimate the average write barrier overhead we must 
consider the number of events (i.e., 5%). Since h+i+s=1
and n<=16, we estimate that our instrumented KVM runs 
slowdown as average 0.05*0.17(1+s+9s2), and at the most 
16.15%.

2http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.ht
ml

Let further α and ξ denote respectively the percentage
of inter-region and intra-regions references, found in the 
assignments made by a task. By using the picoJava-II
page-based write barrier support, the introduced overhead
is factorized by α; α<=0.5. Finally, by using the
specialized hardware support for the region-stack
algorithm, we estimate the average write barrier overhead
as 0.05*α*0.17(1+s+s2), and its bound as 1.275%.

5.5 Configuring write barriers

Considering 32 regions and a page size of 16 Kbytes, 
we introduce: (i) a routine to configure the TRAIN_MASK

field with the 00000000000 value and the CAR_MASK field 
with the 11111 value (see Figure 10), (ii) a routine to 
enable and disable page-based write barriers (see Figure 
11), and (iii) a routine to enable/disable this mechanism
(see Figure 12).

Figure 10: Configuring page-based write barriers.

Figure 11: Enabling/disabling page-based write barriers.

Figure 12: Enabling and disabling region-based barriers.

disable_gc_notify

priv_read_psr

spush   0xEFFF

      seti   0xFFFF

iand // unset bit GCE

priv_write_psr

ret

configure_page_based_WB

priv_read_gc_config // read the GC_CONFIG register

spush 0x001F  // TRAIN_MASK=00000000000

      seti 0xFFFF  // governs referenced-based WB

      iand  // and(GC_CONFIG, 0x001FFFFF)

spush 0x001F  // CAR_MASK=11111

      seti 0x00000  // governs referenced-based WB

      ior  // or(GC_CONFIG, 0x001FFFFF)

priv_write_gc_config // write the GC_CONFIG register

enable_mr_notify

        priv_read_psr

spush   0x0080

seti   0x0000

        ior                   //set bit 23

priv_write_psr

disable_mr_notify

priv_read_psr

spush   0xFF7F

seti   0xFFFF

iand            //unset bit 23

priv_w rite_psr

enable_gc_notify

priv_read_psr

      spush   0x10000

      seti   0x0000

iand // set bit GCE

priv_write_psr

ret
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6 Conclusions

       The RTSJ specification imposes restricted
assignments rules that keep longer-lived objects from
referencing object in scoped memory, which are possibly 
shorter live. In our solution, the detection of illegal
assignments related with memory regions, is made
dynamically by introducing a write barrier mechanism
based on a region-stack associated to the active task.
    Some critics to RTJS consider that several aspects of 
the specification have not been resolved yet [12], and that 
drawbacks are significant when considering memory
management [13]. Regarding our software-based solution, 
we found only two problems: the high overhead that 
introduces the dynamic check of illegal assignment for 
scoped MRs, and that this overhead must be bounded by 
limiting the nested scoped levels. Our solution, to improve
the performance of memory management, partly addresses 
the use of hardware aid by exploiting existing hardware 
support for Java (i.e., the picoJava-II microprocessor). The
performance of this solution has been reduced nearly zero 
by using specialized hardware, which also avoids us to 
limit the nested scoped levels.
    Our hardware-based solution is efficient, but not very 
flexible, because we must configure the system to
determine the virtual region memory map, which can be 
unpractical for classes dealing with I/O mapped memory 
(e.g., ImmortalPhysicalMemory). Also requires the size 
of a region to be multiple of the car size, which may
introduce internal fragmentation. These problems can be 
avoided by using the header of the object in the write 
barrier mechanism instead of the object reference. Another
problem with our solutions is that we omit write barriers in 
native code, which may be solved by forcing the native 
code to register their writes explicitly.
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However, we think that for some kind of real-time systems 
like embedded or critical ones, the memory management 
model can be simplified as in [14].
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