
Hardware-based Solution Detecting Illegal References in Real-Time Java∗

M. Teresa Higuera-Toledano

Facultad Informática, Universidad Complutense de Madrid, 28040 Madrid Spain

Email: mthiguer@dacya.ucm.es

∗ Founded by the Ministerio de Ciencia y Tecnología of Spain (CICYT); Grant Number TIC2002-00334.

Abstract

The memory model used in the Real-Time Specification
for Java (RTSJ) imposes strict assignment rules to or from
memory areas preventing the creation of dangling
pointers, and thus maintaining the pointer safety of Java.
An implementation solution to ensure the checking of
these rules before each assignment statement consists to
use write barriers executing a stack-based algorithm.
This paper provides a hardware-based solution for both
write barriers and the stack-based algorithm.

1 Introduction

From a real-time perspective, the Garbage Collector (GC)
introduces unpredictable pauses that are not tolerated by
real-time tasks. Real-time collectors eliminate this problem
but introduce a high overhead. An intermediate approach
is to use Memory Regions (MRs) within which both
allocation and de-allocation are customized and also the
space locality is improved. Application of these two
implicit strategies has been studied in the context of Java,
which are combined in the Real-time Specification for Java
(RTSJ) [3]. RTSJ extends Java to support key features for
real-time systems such as real-time scheduling and
predictable memory. This paper focuses on how to
improve the performance of a Java memory management
solution accounting for relevant Java specifications: the
RTSJ and the KVM [14] targeting limited-resource and
network connected devices, and the picoJava-II [15]
microprocessor.

The MemoryArea abstract class supports the region
paradigm in the RTSJ specification through the three
following kinds of regions: (i) immortal memory, supported
by the ImmortalMemory and the
ImmortalPhysicalMemory classes, that contains
objects whose life ends only when the JVM terminates;
(ii) (nested) scoped memory, supported by the
ScopedMemory abstract class, that enables grouping
objects having well-defined lifetimes; and (iii) the
conventional heap, supported by the HeapMemory class.

 An application can allocate memory into the system
heap, the immortal system memory region, several scoped
memory regions, and several immortal regions associated
with physical characteristics. When a new scope is
entered by calling the enter() method of the instance or
by starting a new task (i.e., by instancing a
RealtimeThread or a NonHeapRealtimeThread)
whose constructors where given a memory region. In the
second case, an object created by the task is allocated
within memory associated with this scope. When the
scope is exited by returning from the enter() method, all
objects will allocate within the memory associated with the
enclosing scope (i.e., the nested outer scope).

Objects allocated within immortal regions live until the
end of the application and are never subject to garbage
collection. Objects with limited lifetime can be allocated
into a scoped region or the heap. Garbage collection
within the application heap relies on the (real-time)
collector of the JVM. A scoped region gets collected as a
whole once it is no longer used. The lifetime of objects
allocated in scoped regions is governed by the control
flow. Strict assignment rules placed on assignments to or
from MRs prevent the creation of dangling pointers (see
Table 1). Shared scoped regions are used to
communication among real-time threads and normal (non-
real-time) threads.

Table 1. Assignment rules in RTSJ.

The JVM must check for the above assignment rules
before to execute an assignment statement, and throw an
illegalAssignment() exception, if they are violated.
This check includes the possibility of static analysis of the
application logic [3]. In this paper, we specifically treat the
issue of dynamic checks for illegal assignment.

Reference
to Heap

Reference
to Immortal

Reference
to Scoped

Heap Yes Yes No
Immortal Yes Yes No
Scoped Yes Yes Same, outer,

or shared
Local
Variable

Yes Yes Same, outer,
or shared

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

1.1 Related work

Several researches have examined the possibility of
replacing the Java GC by an adequate stack-allocation
scheme, which is more predictable. Stack-allocation is
desirable because execution time properties are easier to
capture than heap allocation. The Tofte-Talpin calculus
[17] uses a lexically scoped expression to delimit the
lifetime of a region for ML inference systems. Memory for
the region is allocated when the control enters into the
scope of the region constructor, and is de-allocated when
the control leaves the scope. This mechanism is
implemented by a stack of regions where regions are
ordered by lifetimes. The allocation and de-allocation of
regions is determined at compile time by a type-based
analysis, which consists to annotate in the source
program every expression creating a value with a region
variable.

As the Tofte-Talpin solution, our solution is based on a
stack of scoped regions ordered by life-times [10]. Since in
RTSJ a region can be shared among several threads, this
solution requires more complex mechanisms because the
region will remain active until the last thread has exited,
and this fact makes difficult to determine the de-allocation
of regions at compile time. In [5], we found a region-based
approach to memory management in Java using static
analysis . As conclusion of this work, fixed-size regions
have better performance than variable-sized regions, and
region allocation has more predictable and better
performance that the GC. But, this solution permits the
creation of dangling pointers.

Our solution consists to check the imposed
assignment rules preserving dangling pointers
dynamically, just when executing the assignment
statement. In order to do so, we introduce an extra code in
all bytecodes causing an object assignment. This extra
code, normally called write barrier must be executed
before updating the object reference. A similar approach
given in [4] proposes a contaminated GC based on the
idea that each object in the heap is alive due to references
that begin in the runtime stack, which uses also a stack-
based memory management that operates dynamically.
But, this solution collects memory within the heap, and
does not treat another memory region.

The most common approach to implement read/write
barriers is by inline code, consisting in generating the
instructions executing write barrier events for every
load/store operation. This solution requires compiler
cooperation and presents a serious drawback because it
increases the size of the application object code [19]. This
approach is taken in [2] where the implementation uses
five runtime heap checks (e.g., CALL, METHOD,

NATIVECALL, READ, and WRITE) to ensure that a critical

task does not manipulate heap references. Alternatively,
our solution instruments the bytecode interpreter,
avoiding space problems, but this still requires a
complementary solution to handle native code.

The use of write barriers and a stack of scoped regions
to detect illegal inter-region assignments has been
introduced in [7] and developed in [6]. The solution [7]
minimizes the write barrier overhead by using hardware
support such as the picoJava-II microprocessor [15],
which allows performing write barrier checks in parallel
with the store operation. In [8], we compare and evaluate
the solutions proposed in [6] and [7]. In [10], we address
problems related to the coexistence of MRs and a real-time
GC within the heap, such as “memory access errors” and
“real-time invariants” are addressed in detail, as well the
region-stack maintenance, and the scoped-region
collection.

The aforementioned solutions combine memory regions
and a real-time GC collecting objects within the heap. As
contrast, in this paper we do-not considerer a real-time GC
within the heap, we only address illegal assignments.
Then, the solution is simplified. As our major contribution,
we introduce a special hardware to support the region-
stack algorithm detailed in [9], and the way to improve the
performance of checking for illegal assignments to objects
within scoped regions. Integrating our specialized
hardware support for scoped regions and the write barriers
hardware support that picoJava-II provides for
generational GCs , both hardware support can work
together to detect illegal assignments across regions at
negligible time overhead.

1.2 Paper organization

This paper proposes addresses the problem
associated with inter-region references introduced by
MRs (i.e., illegal assignment). We first present our basic
approach, which includes write barriers to detect whether
the application attempts to create an illegal assignment,
and a description of how scoped regions are supported
(Section 2). A hardware-based solution to improve the
performance of write barriers, which reduces the write
barrier overhead for intra-region assignments to zero, is
then given (Section 3). Next, we propose a specialized
hardware to support the stack-based algorithm, which
makes negligible the time-cost to detect illegal
assignments across scoped regions (Section 4). We
present basic modifications to the Java VM in order to
make it compatible with the existence of memory regions,
and evaluate the overhead introduced by write barriers in
our solution by instrumenting the KVM (Section 5).
Finally, some conclusions and a summary of our
contribution; conclude this paper (Section 6).

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

2 Detecting illegal assignments

A MR implementation must ensure that objects within
the heap or the immortal memory cannot reference objects
within a scoped region, and objects within a scoped
region cannot reference objects within another scoped
region that is neither non-outer nor shared. In this
section, we use write barriers to detect illegal inter-region
assignment at run-time, and a stack-based algorithm to
check whether a scoped region is outer to another one.

2.1 Checking for inter-region assignments

The basic idea to detect illegal assignments is to take
actions upon those instructions that cause one object to
reference another (i.e., by using write barriers):
• The putfield (aputfield_quick) bytecode causes

a reference from an object X to another one Y to be
created, and the aastore (aastore_quick)
bytecode stores a reference (Y) into an array of
references (X).

• The putstatic (aputstatic_quick) bytecode
causes a reference from an object (X) within
persistent memory (i.e., an outermost region) to
another object (Y) to be created.

The header of the object must specify both the region to
which the object belongs and the region type. Then, when
an object/array is created by executing the new

(new_quick) or newarray (newarray_quick)
bytecode, it is associated with the scope of the active
region. Local variables are also associated with the scope
of the active region.

Figure 1 shows the write barrier pseudo-code, which
must be introduced in the interpretation of the
aforementioned bytecodes. The region() function
returns: heap, immortal, or scoped depending on the
type of the region to which the object parameter belongs,
and the shared() function returns true when the region
to which the object parameter belongs is a shared one.
And the nested(X,Y) function returns true, when the
region’s scope to which the Y object belongs is the same
or outer than the region’s scope to which the X object
belongs.

Figure 1. Write barrier code detecting illegal assignment.

2.2 Checking nested scoped MRs

In order to detect illegal assignments to scoped
regions, every thread has associated a region-stack
containing all scoped MRs that the thread can hold. And
every scoped region is associated with a reference counter
that keeps track of the use of the region by tasks. The MR
at the top of the stack is the active region for the task,
whereas the MR at the bottom of the stack is the
outermost scoped region for the task. The default active
region is the heap. When the task does no use any scoped
region, the region-stack is empty and the active region is
the heap or an immortal MR. Checking nested regions
requires two steps.

In a first step, the region-stack of the active task is
explored, from the top to the bottom, to find the MR to
which the X object belongs (see Figure 2). If it is not
found, this is notified by throwing a
MemoryAccessError()exception1.

a. The X region is found. b. The X region is not found.

 Figure 2. First exploration of the region-stack.

A second step explores the region-stack again,
considering the start of the search the region to which the
X object belongs, and the objective is to find the MR to
which the Y object belongs (i.e., the region to which the Y
object belongs must be outer to the region to which the X
object belongs). If the scoped region of Y is found, the
nested(X,Y) returns true (see Figure3).

a. Y is outer to X . b. Y is inner to X.

Figure 3. Second exploration of the region-stack.

1 This exception is thrown upon any attempt to refer to an object
in an inaccessible MemoryArea object.

wrrite_barrier_code

if (region(Y)=scoped)

if (region(X)<>scoped) IllegalAssignment()

else if ((not shared(Y)) and (not nested(X, Y)))

IllegalAssignment();

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

3 Using hardware support

In this section, we first present an overview of the
write barrier hardware support that the picoJava-II
microprocessor [15] provides. Next , we introduce a
hardware-based solution to improve the write barrier
performance of memory regions.

3.1 The picoJava-II write barrier

Upon each instruction execution, the picoJava-II core
checks for conditions that may cause a trap. From the
standpoint of GC, this microprocessor checks for the
occurrence of write barriers, and notifies them using the
gc_notify trap. This trap is triggered under certain
conditions when assigning to an object’s field an object
reference (i.e., when executing bytecodes requiring write
barriers). The conditions that generate the gc_notify
trap are governed by the values of the GC_CONFIG and
the PSR registers. The GC_CONFIG register governs two
types of write-barrier mechanism: page-based and
reference-based. Whereas the reference-based write
barriers are used to implement incremental collectors, the
page-based barrier mechanism was designed specifically
to assist generational collectors based on the train-based
algorithm [18], which divides the object space into a
number of fixed blocks called cars, and arranges the cars
into disjoint sets (trains). This algorithm tracks references
across cars within the same train.

3.2 Supporting memory regions

Our solution uses the picoJava-II paged-based
mechanism to detect references across different regions
by mapping each region in a car. If the GCE bit of the PSR
register is set, then page-based write barriers are enable.
The object reference in picoJava-II has 4 fields: GC_TAG,
ADDRESS, X, and H. The ADDRESS field (bits <29:2>) of
the reference always points to the location of the object
header. In the GC_CONFIG register, the TRAIN_MASK

field (bits <31:21>) allows us to know whether both
objects in an assignment X and Y belong to the same train,
whereas the CAR_MASK field (bits <20:16>) detects
whether belong to different cars (see Figure 4).

if (PSR.GCE = 1) then

 if ((X<29:19>&GC_CONFIG<31:21>)=(Y<29:19>& GC_CONFIG<31:21>))

and

((X<18:14>&GC_CONFIG<20:16>)<>(Y<18:14>&GC_CONFIG<20:16>))

then gc_notify trap

Figure 4: Page-based write barrier mechanism.

If, for example, we initialize the REGION_MASK field as
0000000000, and the CAR_MASK field as 11111, we have
only a train divided in 32 cars (regions), each one divided
in pages of 16 Kbytes (see Figure 5).

Figure 5: Memory map:CAR_MASK with 11111.

The page-based mechanism avoids us to execute the
write barrier code when both objects X and Y belongs to
the same region (i.e., for intra-region assignments). Then,
write barriers are executed only for references across
regions (i.e., for inter-regions assignments). Figure 6
shows the associated exception routine to the gc_notify
trap, which must be executed for inter-region assignments.
Note that spatial locality property means that intra-regions
assignments are more frequent than inter-region
assignments [1]. Then, we improve the performance of our
solution at least 50%.

Figure 6: Treating the gc_notify trap.

4 The region-stack algorithm in hardware

In order to improve the performance of our solution, we
are interested in reducing the execution time taken to
check illegal references caused by assignments among
scoped MRs, which depends on the region stack size. In
this section we introduce a hardware executing the
nestedRegions(X,Y) function, which supports the
region stack of the active task in an associative memory.

gc_notify _trap_code

if (region(Y) =scoped)

if (region(X)<>scoped) IllegalAsignment()

else if ((not shared(Y)) and (not nested(X, Y)))

IllegalAsignment();

priv_ret_form_trap;

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

4.1 Checking nested regions

Similarly to the write-barriers mechanism of picoJava-II
[15], our proposed hardware checks for the occurrence of
scoped-based write barriers and notify them by using the
mr_notify trap upon an illegal assignment to an object
within a scoped region. The hardware executing the
region-stack based algorithm, basically consists in an
associative memory called SCOPED_STACK (Figure 7).

Figure 7: Region-based mechanism for scoped regions.

Each entry of the SCOPED_STACK associative memory
contains a mark bit, called Present-Bit (P), which indicates
whether the corresponding entry must be considered as
an element of the region stack. This bit is used in the first
step of the algorithm, when the region of the X object is
sought in the region stack. Each entry contains also a
valid bit called Valid-Bit (V), which indicates whether the
corresponding entry must be considered at the second
step of this algorithm, when the region of the Y object is
sought in the region stack.

In the following, we describe the behavior of the two
steps of this hardware-based mechanism, which are
governed by the TEMP signal:

• In a first step (i.e., TEMP=0), the region to which the
X object belongs is sought in the region stack (i.e., in
all entries with P=1). If it is found (e.g., at entry n), all
entries from n to the bottom of the stack are validated
by setting their V bit.

• In a second step (i.e., TEMP=1), the region to which
the Y object belongs is sought in the sub-stack
formed by all entries that have been validated in the

previous step (i.e., all entries with V=1). If it is not
found, the mr_notify signal activates raising the
IllegalAssignment() exception.

Note that when the bit P is set (P=1), the corresponding
entry is an element of the region stack of the active task.
In contrast, when this bit is unset (P=0), the
corresponding entry is considered empty. And when the
V bit is set, the region of the corresponding entry is outer
that the region to which the X object belongs (i.e., V=1
means that the X object can reference objects within the
region). The condition under which the mr_notify trap
is generated can be governed by a reserved bit in the PSR
register (i.e., the <31:23> bits). If this bit (e.g., the <23> bit),
which we call Memory Region Write Barrier Enable (MRE),
is set, then scoped-based write barriers are enable. Then,
by unseting this bit, we disable the mr_notify trap.

4.2 Dealing with shared regions

In order to avoid the mr_notify throwing upon
assignments to shared scoped regions, which is an
allowed condition, we introduce a new associative memory
(see Figure 8): the SHARED_STACK, which contains all
shared scoped memory regions. The behavior of this
mechanism affects only the second step of the algorithm.
In this case, the Y object is soughed in both associative
memories (i.e., the SCOPED_STACK and the
SHARED_STACK), whether it is not found in neither of the
associative memories and the PSR.MRE bit is set (i.e.,
memory region write barriers are allowed), the
mr_notify signal traps.

Figure 8: Region-based mechanism for shared regions.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

We consider that the <31:30> bits of the object
reference are used to specify the type of the region to
which the object belongs (e.g., 00 for the heap, 01 for
immortal, 10 for scoped non-shared, and 11 for scoped
shared). Figure 9 shows the code of the associated
exception routine to the gc_notify trap. This code, first
checks for the region to which the Y object belongs, and
whether it is scoped non-shared enables the introduced
hardware-based write barrier mechanism.

Figure 9: Code for the gc_notify trap.

Each time a task is scheduled for execution, all entries
of both memories the SCOPED_STACK and the
SHARED_STACK must be configured respectively with the
scoped region stack and the shared scoped MRs that the
scheduled task can access. This configuration introduces
some overhead at context -switch time. In order to
access/configure the SCOPED_STACK (SHARED_STACK)
memory, we extend the picoJava-II instruction set by
introducing the priv_read_scoped_stack (priv_read_shared_stack) and

priv_write_scoped_stack (priv_write_shared_stack) bytecodes,
which operands are the entry index and a memory address
to load/store the region identifier.

5 Integration within the KVM

 We have modified the KVM [14] to implement three
types of memory regions: (i) the heap that is collected by
the KVM GC, (ii) immortal that is never collected and can
not be nested, and (iii) scoped that have limited live-time
and can be nested. These regions are supported by the
HeapMemory, the ImmortalMemory, and the
ScopedMemory classes. Unlike RTSJ, in our prototype the
ScopedMemory class is a non-abstract class, and the
ImmortalPhysicalMemory class has not been
implemented. We have limited to 32 the number of regions.
We consider that regions are paged, and the page size is
16 Kbytes. Also, the maximum number of pages that a
region can hold is has been limited to 8. We consider
further that a maximum of 64 tasks can reference objects in
the same scoped MR.

5.1 Memory footprint

 We maintain a region-structure of 2 words for each
MR object in the system with the following format:
REGION_TYPE <31:30>, REGION_ID <29:25>,
OUTER_REGION_ID <24:20>, REFERENCE_COUNTER
<19:14>, INITIAL_SIZE <13:11>, MAXIMUN_SIZE <10:8>,

and USED_PAGES <7:0>. Where the REFERENCE_COUNTER,
the INITIAL_SIZE, and MAXIMUN_SIZE fields allow us to
know respectively: the number of tasks that can allocate or
reference objects in the region, the initial number of pages
of the region, and the number of pages that the region can
hold. The USED_PAGES field is a bitmap indicating the
pages of the region. If for example the USED_PAGES field
contains the 00000101 value that means that pages 0 and 2
of memory compounds the region (i.e., if the REGION_ID
contains the 00000 value, pages 0 and 32 of memory
compounds the region). The region-structure increases
the memory footprint as maximum of 128 Bytes. Note that
these region-structures forms a scope-tree [12] where the
heap is the root and immortal regions are not included.

 In order to adapt the KVM objects to the picoJava-II
microprocessor, we add a word to the object header of the
KVM. The added word includes the following fields:
REGION_TYPE <31:30> (GC_TAG in picoJava-II) and
REGION_ID <18:14> (CAR_ADDRESS in picoJava-II). Where
the REGION_ID field specifies the MR to which the object
belongs, and the REGION_TYPE specifies the region type
(e.g., 00 for the heap, 01 for immortal, 10 for scoped non-
shared, and 11 for scoped shared). This increases a word
per object the memory consumption. Alternatively, we can
modify the original header format of KVM objects (i.e.,
SIZE <31:8>, TYPE <7:2>, MARK_BIT <1>, and STATIC_BIT
<0>) to support the identification and type of the region to
which the object belongs (i.e., REGION_TYPE <31:30>,
SIZE_H <29:19>, REGION_ID <18:14>, SIZE_L <13:8>,

TYPE <7:2>, MARK_BIT <1>, and STATIC_BIT <0>). Note
that the maximum size of the object has been reduced from
16 Mbytes to 512 Kbytes; given the small average object
size that the specJVM [16] applications present (i.e., about
32 Bytes), we optimize for small objects.

5.2 Worst case for write barrier

Recall that in the first step of the algorithm, the region-
stack is explored from the top to the bottom to find the
region of the X object. Suppose that the number of
explored levels is x and the region-stack have n levels. In
the second step of the algorithm, the region-stack is
explored from the region found in the previous step (i.e.,
the n-x inner level) to found the region of the Y object.
Suppose that the number of explored levels is y (i.e., it is
found at the n-x-y inner level). Since it is evident that n>0,

gc_notify _trap_code

if (region(Y) =scoped)

if (region(X)<>scoped) IllegalAsignment()

else if (not shared(Y)) begin

enable_mr_notify ;

nop;

disable_mr_notify

end;

priv_ret_form_trap

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

then x+y<n. We conclude that n is the maximum bound of
executed evaluations to check whether a region is outer
than another one.

We have limited the number of scoped nested levels to
16, which allows us to support the region stack of each
task in 5 words. Then, the introduced memory footprint is
not important. The maximum write barrier cost introduced
per assignment is when exploring the 16 levels of the
region stack. Note that this cost includes both the
evaluations besides chasing the stack and the evaluations
to explore the stack (i.e., (3+n); n<=16). With this
implementation, the overhead introduced in the KVM to
evaluate a condition of the write barrier test is about 17%
per assignment. This means that when introducing a
condition in the interpretation of a bytecode causing write
barriers, we increase 17% the execution time of the
bytecode, and the maximum write barrier overhead per
assignment is 323%.

Since the introduced hardware minimizes the time cost
required to explore the stack to the time that picoJava-II
spends to catch a trap, we estimate the maximum write
barrier cost introduced per assignment as 50%.

5.4 Average write barrier overhead

To obtain the average write barrier overhead, two
measures are combined: the number of events, and the
cost of the event. We use an artificial collector benchmark
which is an adaptation made by Hans Boehm from the
John Ellis and Kodak benchmark2. This benchmark
executes 262*106 bytecodes and allocates 408 Mbytes.
The number of executed bytecodes performing write
barrier test is 15*106 (i.e., aastore: 1*106, putfield:
6*106, putfield_fast: 7*106, putstatic: 19*106, and
putstatic_fast: 0) for a total of 262*106 executed
bytecodes. This means that 5% of executed bytecodes
perform a write barrier test, as already obtained with
SPECjvm98 in [11].

Considering that all the objects in the system have the
same probability to be accessed, let h, i and s be
respectively the proportion of objects within the heap, an
immortal region, or a scoped region. Then, we compute the
average write barrier cost introduced per assignment as:
0.17((h+i+s)+s(h+s+i)+s*s(1+n/2)). Recall that to
estimate the average write barrier overhead we must
consider the number of events (i.e., 5%). Since h+i+s=1
and n<=16, we estimate that our instrumented KVM runs
slowdown as average 0.05*0.17(1+s+9s2), and at the most
16.15%.

2http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.ht
ml

Let further α and ξ denote respectively the percentage
of inter-region and intra-regions references, found in the
assignments made by a task. By using the picoJava-II
page-based write barrier support, the introduced overhead
is factorized by α; α<=0.5. Finally, by using the
specialized hardware support for the region-stack
algorithm, we estimate the average write barrier overhead
as 0.05*α*0.17(1+s+s2), and its bound as 1.275%.

5.5 Configuring write barriers

Considering 32 regions and a page size of 16 Kbytes,
we introduce: (i) a routine to configure the TRAIN_MASK

field with the 00000000000 value and the CAR_MASK field
with the 11111 value (see Figure 10), (ii) a routine to
enable and disable page-based write barriers (see Figure
11), and (iii) a routine to enable/disable this mechanism
(see Figure 12).

Figure 10: Configuring page-based write barriers.

Figure 11: Enabling/disabling page-based write barriers.

Figure 12: Enabling and disabling region-based barriers.

disable_gc_notify

priv_read_psr

spush 0xEFFF

 seti 0xFFFF

iand // unset bit GCE

priv_write_psr

ret

configure_page_based_WB

priv_read_gc_config // read the GC_CONFIG register

spush 0x001F // TRAIN_MASK=00000000000

 seti 0xFFFF // governs referenced-based WB

 iand // and(GC_CONFIG, 0x001FFFFF)

spush 0x001F // CAR_MASK=11111

 seti 0x00000 // governs referenced-based WB

 ior // or(GC_CONFIG, 0x001FFFFF)

priv_write_gc_config // write the GC_CONFIG register

enable_mr_notify

 priv_read_psr

spush 0x0080

seti 0x0000

 ior //set bit 23

priv_write_psr

disable_mr_notify

priv_read_psr

spush 0xFF7F

seti 0xFFFF

iand //unset bit 23

priv_w rite_psr

enable_gc_notify

priv_read_psr

 spush 0x10000

 seti 0x0000

iand // set bit GCE

priv_write_psr

ret

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

6 Conclusions

 The RTSJ specification imposes restricted
assignments rules that keep longer-lived objects from
referencing object in scoped memory, which are possibly
shorter live. In our solution, the detection of illegal
assignments related with memory regions, is made
dynamically by introducing a write barrier mechanism
based on a region-stack associated to the active task.
 Some critics to RTJS consider that several aspects of
the specification have not been resolved yet [12], and that
drawbacks are significant when considering memory
management [13]. Regarding our software-based solution,
we found only two problems: the high overhead that
introduces the dynamic check of illegal assignment for
scoped MRs, and that this overhead must be bounded by
limiting the nested scoped levels. Our solution, to improve
the performance of memory management, partly addresses
the use of hardware aid by exploiting existing hardware
support for Java (i.e., the picoJava-II microprocessor). The
performance of this solution has been reduced nearly zero
by using specialized hardware, which also avoids us to
limit the nested scoped levels.
 Our hardware-based solution is efficient, but not very
flexible, because we must configure the system to
determine the virtual region memory map, which can be
unpractical for classes dealing with I/O mapped memory
(e.g., ImmortalPhysicalMemory). Also requires the size
of a region to be multiple of the car size, which may
introduce internal fragmentation. These problems can be
avoided by using the header of the object in the write
barrier mechanism instead of the object reference. Another
problem with our solutions is that we omit write barriers in
native code, which may be solved by forcing the native
code to register their writes explicitly.

References

[1] H.G. Baker. "Infant Mortality and Generational Garbage
Collection". In Proc. of the Workshop on Garbage
Collection in Object-Oriented Systems. OOPSLA'91. ACM
SIGPLAN Notices 1993.

[2] W.S. Beebe and M. Rinard. “An Implementation of Scoped
Memory for Real-Time Java”. In Proc of 1st International
Workshop of Embedded Software (EMSOFT), 2001.

[3] G. Bollella and J. Gosling."The Real-Time Specification for
Java". IEEE Computer, June 2000.

[4] D.J. Cannarozzi, M.P. Plezbert, and R.K. Cytron.
“Contamined Garbage Collection”. In Proc. of the
Conference of Programming Languages Design and
Implementation (PLDI). ACM SIGPLAN, May 2000.

[5] M. Christiansen, P. Velschow. “Region-Based Memory
Management in Java”. Master’s thesis, Department of

Computer Science (DIKU), University of Copenhagen,
1998.

[6] M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.P.
Lesot, and F. Parain. "Memory Management for Real-time
Java: an Efficient Solution using Hardware Support". Real-
Time Systems journal. Kluber Academic Publishers, to be
published.

[7] M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.P.
Lesot, and F. Parain. "Region-based Memory Management
for Real-time Java". In Proc. of the 4th International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC). IEEE 2001.

[8] M.T. Higuera and, V. Issarny “Analyzing the Performance
of Memory Management in RTSJ”. In Proc. of the 5th
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC). IEEE 2002.

[9] M.T. Higuera. "Memory Management Solutions for Real-
time Java". PHD Thesis. INRIA. March 2002.

[10] M.T. Higuera and M.A. de Miguel. "Dynamic Detection of
Access Errors and Illegal References in RTSJ". In Proc. Of
the 8th IEEE Real-time and Embedded Technology and
Applications Symposium (RTAS). IEEE 2002.

[11] J.S. Kim and Y. Hsu. "Memory System Behaviour of Java
Programs: Methodology and Analysis". In Proc. of the
ACM Java Grande 2000 Conference.

[12] K. Nielsen. “Real-Time Programming with Java
Technologies”. In Proc. of the 4th International Symposium
on Object-Oriented Real-Time Distributed Computing
(ISORC). IEEE 2001.

[13] K. Nilsson and T.Ekman. “Deterministic Java in Tiny
Embedded Systems”. In Proc. of the 4th International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC). IEEE 2001.

[14] Sun Microsystems. “KVM Technical Specification".
Technical Report. Java Community Process, May 2000.
http://java.sun.com.

[15] Sun Microsystems. “picoJava-II Programmer’s Reference
Manual". Technical Report. Java Community Process,
May 2000. http://java.sun.com.

[16] Standard Performance Evaluation Corporation: SPEC Java
Virtual Machine Benchmark Suite.
http://www.spec.org/osg/jvm98, 1998.

[17] M. Tofte. “Implementing the Call-by-Value Lambda-
Calculus using a Stack of Regions”. .In Proc. of the
Conference of programming Languages Design and
Implementation (PLDI). ACM SIGPLAN, January 1994.

[18] Wilson P.R. and Johnston M.S. “Real-Time Non-Copying
Garbage Collection”. ACM OOPSLA Workshop on
Garbage Collection and Memory Management. September
1993.

[19] Zorn B. “Barrier Methods for Garbage Collection”.
Technical Report CU.CS. Department of Computer
Science. University of Colorado at Boulder.
http://www.cs.colorado.edu. November 1990.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

However, we think that for some kind of real-time systems
like embedded or critical ones, the memory management
model can be simplified as in [14].

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

