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Abstract. This paper addresses the issue of improving the performance of 
memory management for real-time Java applications, building upon the Real-
Time Specification for Java (RTSJ). This specification imposes strict assign-
ment rules to or from memory areas preventing the creation of dangling point-
ers, and thus maintaining the pointer safety of Java. The dynamic issues that 
Java presents, requires for some cases ensuring the checking of these rules at 
run-time, which adversely affects both the performance and predictability of 
the RTSJ application. This paper presents an efficient algorithm for managing 
scoped areas which requires some modifications in the current RTSJ specifica-
tion. 

1   Introduction 

The Real-time Specification for Java (RTSJ) [6] introduces the concept of scoped 
memory to Java by extending the Java memory model to provide several kinds of 
memory areas: the garbage-collected heap, immortal memory areas that are never 
garbage collected, and scoped memory areas that are collected when there is not a 
thread using the memory area. The lifetime of objects allocated in scoped areas is 
governed by the control flow. Because scoped areas can be reclaimed at any time, 
objects within an area with a longer lifetime are not allowed to create a reference to 
an object within another area with a potentially shorter lifetime. Strict assignment 
rules placed on assignments to or from memory areas prevent the creation of dangling 
pointers. An RTSJ implementation must enforce these scope checks before executing 
an assignment. 

This paper focuses on data structure and algorithms supporting the RTSJ assign-
ment rules. In order to enforce the safety assignment rules in a more efficient way 
than the implementation proposed in [3], we study the behaviour of the single parent 
rule, and propose an alternative implementation based on the current edition of RTSJ 
[6]. We present an in depth description of the RTSJ memory model (Section 2). We 
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suggest a solution to improve the RTSJ memory model, which can be implemented 
efficiently by using simple data structures and algorithms (Section 3). We provide an 
outline of related work (Section 4). Finally a summary of our contribution conclude 
this paper (Section 5). 

2   The Scoped Memory Model Behavior 

RTSJ makes distinction between tree main kinds of tasks: (i) low-priority that are 
tolerant with the GC, (ii) high-priority that cannot tolerate unbounded preemption 
latencies, and (iii) critical that cannot tolerate preemption latencies. Since immortal 
and scoped areas are not garbage collected, they may be exploited by critical tasks. 
Several related threads, possibly real-time, can share a memory area, and the area 
must be active until at least the last thread has exited. The way that threads access 
objects within memory areas in the current RTSJ edition is governed by the following 
rules:  

 
1. A traditional thread can allocate memory only on the traditional heap. 
2. High-priority tasks may allocate memory from the heap, or from a memory 

area other than the heap by making that area the current allocation context. 
3. Critical tasks must allocate memory from a memory area other than the heap 

by making that area the current allocation context. 
4. A new allocation context is entered by calling the enter() method or by 

starting a real-time thread (i.e. a task or an event handler). Once an area is 
entered, all subsequent uses of the new keyword, within the program logic, 
will allocate objects from the memory context associated to the entered area. 
When the area is exited, all subsequent uses of the new operation will allo-
cate memory from the area associated with the enclosing scope. 

5. Each real-time thread is associated with a scoped stack containing all the ar-
eas that the thread has entered but not yet exited. 

 
Since assignment rules cannot be fully enforced by the compiler, some dangling 
pointers must be detected at runtime [3]. The more basic approach is to take the ad-
vice given in the current edition of the RTSJ specification [6], to scan the scoped area 
stack associated to the current task, verifying that the scoped area from which the 
reference is created was pushed  in the stack than the area to which the referenced 
object belongs. This approach requires the introduction of write barriers [11]; that is 
to introduce a code exploring the scoped area stack when creating an assignment. 
Note that the complexity of an algorithm which explores a stack is O(n), where n is 
the depth of the stack. Since real-time applications require putting boundaries on the 
time execution of some piece of code, and the depth of the scoped area stack associ-
ated with the task of an application are only known at runtime; the overhead intro-
duced by write barriers is unpredictable. In order to fix a maximum boundary or to 
estimate the average overhead introduced by write barriers, we must limit the number 
of nested scoped levels that an application can hold [5].  
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Scoped areas can be nested and each scope can have multiple sub-scopes, in this 
case the scoped memory hierarchy forms a tree. Consider two scoped memory areas, 
A and B, where the A scoped area is parent of the B area. In such a case, a reference 
to the A scoped area can be stored in a field of an object allocated in B. But a refer-
ence from a field of an object within A to another object allocated in B raises the 
IllegalAssignment() exception. When a thread enters a scoped area, all subse-
quent object allocations come from the entered scoped area. When the thread exits the 
scoped area, and there are no more active threads within the scoped area, the entire 
memory assigned to the area can be reclaimed along with all objects allocated within 
it. For the scoped area model behavior, the current edition of the RTSJ specification 
[6] adds the following rules1:  

 
1. The parent of a scoped area is the area in which the object representing the 

scoped area is allocated2.  
2. The single parent rule requires that a scope area has exactly zero or one par-

ent.  
3. Scope areas that are made current by entering them or passing them as the 

initial memory area for a new task must satisfy the single parent rule. 
 

In the current RTSJ, when a task or an event handler tries to enter a scoped area S, we 
must check if the corresponding thread has entered every ancestor of the area S in the 
scoped area tree. Then, safety of scoped areas requires checking both the set of rules 
imposed on their entrance and the aforementioned assignment rules. Both tests re-
quire algorithms, the cost of which is linear in the number of memory areas that the 
task can hold. We suppose that the most common RTSJ application uses a scope area 
to repeatedly perform the same computation in a periodic task. Then, to optimize the 
RTSJ memory subsystem, we suggest simplifying data structures and algorithms. In 
order to do that, we propose to change the RTSJ suggested implementation of the 
parentage relation for scoped areas. 

3   The RTSJ Single Parent Rule 

The single parent rule guarantees that a parent scope will have a lifetime that is not 
shorter than of any of its child scopes, which makes safe references from objects in a 
given scope to objects in an ancestor scope, and forces each scoped area to be at most 
once in the tree containing all area stacks associated with the tasks that have entered 
the areas supported by the tree. The single-parent rule also enforces every task that 
uses an area to have exactly the same scoped area parentage. The implementation of 
the single-parent rule as suggested by the current RTSJ edition makes the behavior of 
the application non-deterministic. In the guidelines given to implement the algorithms 
affecting the scope stack (e.g. the enter() method), the single parent rule guarantees 
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that once a thread has entered a set of scoped areas in a given order, any other thread 
is enforced to enter the set of areas in the same order. Notice that determinism is an 
important requirement for real-time applications.  

Consider tree scoped areas: A, B, and C, and two task τ1 and τ2. Let us suppose 
that task τ1 has entered areas A and B, and task τ2 has entered areas A and C. If task 
τ1 tries to enter the area C or task τ2 tries to enter the area B, which violates the sin-
gle parent rule, the ScopedCycleException() is thrown. If, for example, τ1 enters 
the area C before τ2 tries to enter it, τ2 violates the single parent rule raising the 
ScopedCycleException() exception. But, if τ2 enters the area B before τ2 tries to, 
then it is τ1 which violates the single parent rule and raises the ScopedCycleExcep-
tion() exception.  

3.1   The Proposed Parentage Relation 

In order to maintain the single-parent rule of the current RTSJ edition, we consider 
that the parent of a scoped area is the area within which the area is created [6], and we 
add the following rules: 

 
1. The parentage relation of scoped areas implies an scoped area tree structure, 

where a memory area is added when creating it and deleted when collecting it 
(instead of when entering and exiting the memory area). 

2. Each scoped area must maintain a reference count of the number of scoped ar-
eas within which have been created (child-counter), in addition to the refer-
ence count of the number of threads having it as current area (task-counter). 
The child-counter allows us to maintain alive a scoped area which task-
counter values 0 (i.e. it have not yet entered by a task, or it have been entered 
and exited), but it is the father of the current area of a task.  

3. When both reference counters the child-counter and the task-counter for a 
scoped area reach zero, the scoped area is a candidate to collection.  

 
In this way, as in the current RTSJ edition, we obtain an area tree based on a hierar-
chy relation. But the parent relation is based on the way that scoped areas are created, 
instead of the order in which scoped areas have been entered by threads. Consider 
three scoped areas: A, B, and C, which have been created in the following way: the A 
area has been created within the heap, the B area has been created within the A 
area,and the C area has been created within the B area, which gives the following 
parentage relation: the heap is the parent of A, A is the parent of B, and B is the par-
ent of C. Then, the child-counter for A and B has been incremented to 1, whereas for 
C it is 0. 

Let us further consider the two tasks τ1 and τ2 of our previous example, where we 
have supposed that task τ1 has entered areas A and B, which increases by 1 the task-
counter for A and B. And task τ2 has entered areas A and C, which increases by 1 the 
task-counter for A and C (see Figure 1.a). In this situation, the task-counter for A 
values 2, whereas for B and C values 1. If task τ1 enters the area C and task τ2 the 
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a. τ1 enters B scoped area and τ2 enters C. 
 

 
 

b. τ1 enters C scoped area and τ2 enters B. 

Fig. 1. The scope stack and the single parent rule. 

 

    
 

a. τ1 enters B scoped area.    b. τ1 enters C scoped area. 

Fig. 2. Two diferents stated for the coped stack of task τ1. 

 
area B, at different than those that occur in the suggested implementation of RTSJ 
[6][3], the single parent rule is not violated. Then, instead of throwing the Scoped-
CycleException(), we have the situation shown in Figure 1.b. At this moment, 
the task-counter for scoped memory areas A, B, and C value 2. 

Note that the scoped stack associated to task τ2 includes only the A and B scoped 
regions. Then, even if the task τ2 has entered the scoped memory C before to enter B, 
pointers from objects allocated in B to objects allocated in C are dangling pointers, as 
consequence they are not allowed. We consider another situation: task τ1 enters into 
scoped area A creates B and C, which increases both the task-counter of A by 1 and 
its child-counter by 2, whereas both the task-counter and the child-counter for B and 
C value 0. Then, task τ1 enters into scoped areas B (Figure 2.a) and C (Figure 2.b), 
which increases by 1 the task-counter of both B and C. Only references from objects 
allocated within B or C to objects within A are allowed. Note that it is not possible for 
task τ1 create a reference from an object within B to an object within C, and vice-
versa from an object within B to an object within C, even if task τ1 must exit the area 
C before to exit the area B. Then, if a task τ2 enters into scoped area C and stays there 
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for a while, task τ1 leaves C and leaves B, the scoped area B can be collected and 
there are not dangling pointers. 

Non-scoped areas (i.e. the heap and immortal areas) are not supported in the 
scoped tree. Moreover, the heap and immortal areas are considered as the primordial 
scope, which is considered to be the root of the area tree [3]. Notice that, for the heap 
and immortal memory areas, there is no need to maintain the reference-counters be-
cause these areas exist outside the scope of the application. 

Then, we propose to change the RTSJ specification, so that scoped memory areas 
are parented at creation time. This new parentage relation introduces great advantages 
because i) simplifies the semantic of scoped memory as the single parent rule be-
comes trivially true, ii) scope cycle exceptions does not occur, iii) each thread re-
quires only one scoped stack, iv) and the parentage relation does not change during 
the scoped memory life.  

3.2   Checking the Assignment Rules 

We next show how to extend area tree data structures to perform all required checks 
in constant time. Our approach is inspired in the suggested parentage relation of 
scoped memory areas. As stated the RTSJ imposed assignment rules, references can 
always be made from objects in a scoped memory to objects in the heap or immortal 
memory; the opposite is never allowed. Also the ancestor relation among scoped 
memory areas is defined by the nesting areas themselves, and this parentage is sup-
ported by the area tree. Since area tree changes occur only at determined moments, 
i.e. when creating or collecting a scoped area, we can apply the technique based on 
displays that has been presented in [2]. Each scoped area has associated a display 
containing the type identification codes of its ancestors and its depth in the area tree 
(see Figure 3). 
 
 

 

Fig. 3. Display-based area tree structure. 
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In order to use the display-based technique, we suggest including the following 
rules in RTSJ, instead of the rule which associates a scope stack to each task: 

 
1. The heap and immortal memory areas are always assigned the minimum 

depth.  
2. When creating a scoped memory area, its corresponding depth is the depth of 

the father area plus 1. 
3. Figure 4 shows the pseudo-code that we must introduce in the execution of 

each assignment statement (e.g. x.a=y) to perform the assignment checks in 
constant- time.  

 
   
 
   

 

Fig. 4. Checking the assignment rules. 

3.3   Maintaining the Display Structure 

In the current RTSJ specification edition, the enter() method can throw the Sco-
peCycleException() whenever entering in a scoped region that would violate the 
single parent rule. The current RTSJ edition also advises to push/pop the entered 
region on the scope stack belonging to the current task and to increase/decrease the 
reference counter of the region when the task enters/exits the enter()method (see 
Figure 5).  

 
 
 
 
 
  
 

 

Fig. 5. Current pseudo-code for ma.enter(logic). 

Figure 6 shows the pseudo-code of another operation affecting the scope stack, the 
construction of a new task. In order to maintain the reference counter collector of 
scoped regions, we must increase/decrease the reference counter of all regions on the 
scope stack when creating/destroying the task. 
 
 

 

X = area to which the x object belongs; 
Y = area to which the y object belongs; 
if( (Y.depth <> 0) and (X.display[Y.depth]<>Y.display[Y.depth])) IllegalAssignment:(); 

 
if entering ma would violate the single parent rule throw ScopedCycleException; 
push ma on the scope stack belonging to the current thread; 
increase the ma reference count; 
execute logic.run method; 
decrease the ma reference counter; 
pop ma from the scope stack. 



Studying the Behaviour of the Single Parent Rule in Real-Time Java         275 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. RTSJ pseudo-code to construct a task. 

Whereas in the suggested RTSJ implementation solution, actions are required each 
time a task is created or enters an area having a O(n) complexity, where n is the num-
ber of nested scoped areas. In our proposed solution, when creating a thread or enter-
ing an area the display tree structure is not affected (see Figures 7 and 8). Then, both 
operations, which associate a scoped memory to a task, become constant execution 
time. Even if these operations are potentially infrequent, we consider that it is an 
interesting collateral effect obtaining by changing the parentage relation of scoped 
memory regions. 

 
 
 
   

 

Fig. 7. The proposed enter() method using displays. 

 

 

Fig. 8. Constructing a task by using displays. 

The current RTSJ edition also presents another method allowing a task to change 
the allocation context; the executeInArea() method, which checks the current 
scope stack in order to find the area to which the message associated with the method 
is sent. Since these methods require an exploration of the stack, they have an O(n) 
complexity. Notice that in our proposed solution entering an area older than the cur-
rent one that is in the same branch of the area tree (i.e. in the same scope stack), has 
the same consequences as the executeInArea() method. Therefore, this method is 
not strictly necessary, and actually it does not appear in the former edition of the 
RTSJ specification.  

make  ma the current area;  
increase the task reference count of ma; 
execute logic.run method; 
decrease the task reference count of ma; 
restore the previous current area. 

cma = curent memory region; 
ima = initial memory region; 
if cma is heap or immortal 
  create a new scope stack containing cma 
else 

 start a new scope stack containing the entire current scope stack; 
for every scoped memory area in the new scope stack increase the reference count; 
if ima != current allocation context push ima on new scope stack; 
run the new thread with the new scope stack; 
when the thread terminates every memory area pushed by the thread will have been popped; 
for every scoped memory area in the scope stack decrease the reference count; 
free the scope stack. 

ima = initial memory area;  
make  ima the current area; 
increase the task reference count of ima; 
run the new thread ; 
when the thread terminates decrease the task reference count of ima 
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3.4   Estimating the Write Barrier Overhead 

We have modified the KVM [7] to  implement three types of memory areas: (i) the 
heap that is collected by the KVM GC, (ii)  immortal that is never collected and can 
not be nested, and (iii) scoped that  have limited live-time and can be nested. To ob-
tain the introduced write barrier overhead, two measures are combined: the number of 
events, and the cost of the event. We use an artificial collector benchmark which is an 
adaptation made by Hans Boehm from the John Ellis and Kodak benchmark. This 

benchmark executes 262*106 bytecodes, where 15*106 performs a store operation 

(i.e., aastore: 1*106, putfield: 6*106, putfield_fast: 7*106, putstatic: 19*106, and 
putstatic_fast: 0). That is, the 5% of executed bytecodes perform a write barrier test, 
as already obtained with SPECjvm98 in [8]. The write barrier cost is proportional to 
the number of executed evaluations. With this implementation, the average write 
barrier cost is only 1.6%. Note that this low overhead is not realistic because the 
KVM is a very small and very slow JVM. 

4   Related Works 

The enforcement of the RTSJ assignment rules includes the possibility of static analy-
sis of the application logic [6]. Escape analysis techniques could be used in order to 
remove run-time checks. But the dynamic issues that Java presents, requires for some 
cases to check the assignment rules at run-time. However, static and dynamic tech-
niques can be combined to provide more robustness and predictability of RTSJ appli-
cations. The idea of using both write barrier and a stack of scoped areas ordered by 
life-times to detect illegal inter-area assignments was first introduced in [4]. The most 
common approach to implement read/write barriers is by inline code, consisting in 
generating the instructions executing barrier events for every load/store operation. 
This solution requires compiler cooperation and presents a serious drawback because 
it increases the size of the application object code [9]. This approach is taken in [1] 
where the implementation uses five runtime heap checks (e.g. CALL, METHOD, 
NATIVECALL, READ, and WRITE). Alternatively, our solution instruments the 
bytecode interpreter, avoiding space problems, but this still requires a complementary 
solution to handle native code. The display-based technique was firstly used to sup-
port RTSJ scoped area in [2]. The main difference between both techniques is that 
encoding of the type hierarchy in [5] is known at compile time, whereas in [2] the 
area tree changes at runtime. This technique has been extended to perform memory 
access checks in constant-time. The main contribution of our approach is to avoid the 
single parent checks by changing the parentage relation of scoped area within the area 
tree, which ensures all algorithms managing scoped areas to be executed in constant-
time. 
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5   Conclusions 

To enforce the RTSJ imposed rules, a compliant JVM must check both the single par-
ent rule on every attempt to enter a scoped memory area, and the assignment rules on 
every attempt to create a reference between objects belonging to different memory ar-
eas. Since objects references occur frequently, it is important to implement checks for 
assignment rules efficiently and predictably. The parentage relation of areas is based 
on the way they are created/collected, instead of the way they are entered/exited by 
tasks such as the RTSJ suggests. Then, we avoid checking on every attempt to enter a 
scoped memory area. Also, changes on the proposed stack based structure are less 
frequent, which allows us use more simple algorithms. The scope stack can be coded 
as a display, which allows us to use subtype test based techniques making the en-
forcement of memory references time-predictable, and does not depend of the nested 
level of the area to which the two objects of the memory reference belong. 

In order to do the implementation of required algorithms more efficient, every 
scoped area has two reference counters and a scoped stack associated to it, which 
allows us a more efficient management of areas, making it time predictable. Note that 
by collecting areas, problems associated with reference-counting collectors are 
solved: the space and time to maintain two reference-counts per scoped area is mini-
mal, and there are no cyclic scoped area references. Note that the introduction of this 
change in the parentage relation simplifies the complex semantics for scoped memory 
region adopted by RTSJ. 
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