
Hardware Support for Detecting Illegal
References in a Multiapplication Real-Time
Java Environment

M. TERESA HIGUERA-TOLEDANO

Universidad Complutense de Madrid

Our objective is to adapt the Java memory management to an embedded system, e.g., a wireless

PDA executing concurrent multimedia applications within a single JVM. This paper provides soft-

ware, and hardware-based solutions detecting both illegal references across the application memory

spaces and dangling pointers within an application space. We give an approach to divide/share the

memory among the applications executing concurrently in the system. We introduce and define

application-specific memory, building upon the real-time specification for Java (RTSJ) from the

real-time Java expert group. The memory model used in RTSJ imposes strict rules for assignment

between memory areas, preventing the creation of dangling pointers, and thus maintaining the

pointer safety of Java. Our implementation solution to ensure the checking of these rules before

each assignment inserts write barriers that use a stack-based algorithm. This solution adversely

affects both the performance and predictability of the RTSJ applications, which can be improved

by using an existing hardware support.

Categories and Subject Descriptors: Programming Languages, Processors-memory management,

garbage collection, run-time environments []

General Terms: Languages, design, performance, algorithms

Additional Key Words and Phrases: Write barriers, memory management, garbage collection

1. INTRODUCTION

The demand for multimedia services in embedded real-time systems, such as
wireless personal digital assistants (PDAs), is increasing. The use of PDAs is
foreseen to outrun the use of PCs in the near future. However, for this to actu-
ally happen, there is still the need to devise adequate software and hardware
platforms that will not overly restrict the applications that are supported. In

This research was supported by Consejerı́a de Educación de Comunidad de Madrid, Fondo Europeo

de Desarrollo Regional (FEDER) and Fondo Social Europeo (FSE), through BIOGRIDNET Research

Program S-0505/TIC/000101, and by Ministerio de Educación y Ciencia, through the research grant

TIC2003-01321.

Author’s Address: M. Teresa Higuera-Toledano, Faculted Informática, Universidad Complutense

de Madrid, Ciudad Universitaria, 28040 Madrid Sain; email: mthiguer@dacya.ucm.es.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1539-9087/06/1100-0753 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006, Pages 753–772.

754 • M. T. Higuera-Toledano

general, the environment must accommodate the embedded small-scale con-
straints associated with PDAs and enable the execution of the applications
traditionally supported on the desktop, such as soft real-time multimedia ap-
plications that are becoming increasingly popular. In particular, it is mandatory
to finely tune the management of memory consumption and to enable new ap-
plications that extend the capabilities of the host system.

The ideal candidate for providing an open environment is Java, which ap-
pears as a major player in the area of embedded software environment and al-
lows us to obtain portable code, which can possibly be dynamically downloaded.
Standard Java has some shortcomings regarding the target device that have
been solved by extending the Java API to meet the requirements appertained to
embedded real-time software [Bernadat et al. 1998], such as real-time schedul-
ing and predictable memory. These changes will lead to even greater need for
executing multiple applications in parallel on the same JVM (e.g., [Baker 1991]
and [Czajkowki 2000]). Running multiple applications within a single instance
of the same JVM has the potential for improving the performance and scala-
bility of the system by sharing code and data structures. The communication
among two applications running within the same JVM can be lighter than com-
munication by using RMI.

This paper focuses on a memory management solution in order to divide/
share the heap among different real-time applications accounting for rele-
vant Java specifications: (1) the application isolation API [Java Community
Process 2003], (2) the real-time specification for Java (RTSJ) [Bollella et al.
2002], currently under revision as JSR-121 and JSR-001 respectively, (3) the
KVM [Sun Microsystems 2000] targeting limited-resource and network con-
nected devices, and (4) the picoJava-II [Sun Microsystems 2000] microprocessor
architecture.

1.1 Background

The main issue in delivering allocation is related for providing isolation guar-
antees that ensure that an application will not be disrupted by failure or misbe-
havior caused by another application running in the system. When executing
multiple applications concurrently, if one application consumes all the avail-
able memory, the other applications get starved. One way to avoid this problem
is to divide the memory among applications running in the system, giving each
application a separate garbage collectable area. The application isolation API
[Java Community Process 2003] guarantees strict isolation between programs
(isolates). An isolate encapsulates an application or component, having its own
version of a static state of the classes that it uses. Isolates have disjoint object
graphs and sharing objects among two different isolates is forbidden. From the
programmer point of view, starting an isolate is the same as starting a new
JVM. Isolates are created from standard Java applications. The only require-
ment is that the specified class must be a Java application (i.e., must have the
main() method). As the Java Runtime class, the Isolate class provides methods
to terminate the execution of isolates (i.e., the exit() and halt() methods). The
termination of an isolate is guaranteed to leave the system in a consistent state.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

Hardware Support for Detecting Illegal References • 755

The partition of the heap in separate subheaps allows us to invoke several
collectors concurrently; having a collector per subheap that is customized ac-
cording to the behavior of the embedded application minimizes the latency
time to preempt a local collector from the CPU when a high-priority task from
another application arrives, and distributes the collector overhead among ap-
plications. From a real-time perspective, the garbage collector (GC) introduces
unpredictable pauses that are not tolerated by real-time tasks. Real-time col-
lectors eliminate this problem, but introduce a high overhead. An alternative
approach to the GC is to use memory regions within which both allocation and
deallocation are customized and also space locality is improved. Application of
these two implicit strategies has been studied in the context of Java, which are
combined in RTSJ [Bollella et al. 2002].

The MemoryArea abstract class supports the region paradigm in the RTSJ
specification through the following three kinds of regions: (1) immortal memory,
supported by the ImmortalMemory and the ImmortalPhysicalMemory classes,
that contains objects whose life ends only when the JVM terminates; (2) (nested)
scoped memory, supported by the ScopedMemory abstract class, that enables
grouping objects having well-defined lifetimes; and (3) the conventional heap,
supported by the HeapMemory class. An application can allocate memory on
the system heap, the immortal system memory region, several scoped memory
regions, and several immortal regions associated with physical characteristics.
When entering a new scope by the enter() method of the instance or by starting
a new task (i.e., by creating an instance of RealtimeThread or NonHeapReal-
timeThread), whose constructors were given a memory region. In the second
case, an object created by the task is allocated within memory associated with
this scope. When the scope is exited by returning from the enter() method, all
objects will allocate within the memory associated with the enclosing scope (i.e.,
the nested outer scope). Allocations outside the active region can be performed
by the newInstance() or the newArray() methods.

As an example, the code of Figure 1 shows a thread called myThread (line
21) allocating an object A within the heap (line 6), a real-time thread called
myTask (line 22) allocating an object B within the scoped memory region called
myVTRegion (line 12), an object C within the scoped MR called myLTRegion
(line 14), which is inner to myVTRegion (line 13), and another object D within
the immortal region (line 15). The scoped memory region myVTRegion was
created with a size of 2 KB and can grow to up 4 KB (line 20), whereas the
scoped memory region myLTRegion was created with a size of 1 KB and cannot
grow (line 26). The MemoryParameters object limits the amount of memory
that myTask may allocate to 3 KB for the myVTRegion memory region, to 0 KB
for the immortal memory region, and to 1 KB/sec for the heap (line 23).

Objects allocated within immortal regions live until the end of the applica-
tion and are never subject to garbage collection. Objects with limited lifetime
can be allocated into a scoped region or the heap. Garbage collection within
the application heap relies on the (real-time) collector of the JVM. A scoped
region gets collected as a whole once it is no longer used. The lifetime of objects
allocated in scoped regions is governed by the control flow. Strict assignment
rules placed on assignments to or from memory regions prevent the creation of

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

756 • M. T. Higuera-Toledano

Fig. 1. Using memory regions in RTSJ.

Table I. Assignment Rules in RTSJ

Reference

Heap Immortal Scoped

Heap Yes Yes No

Immortal Yes Yes No

Scoped Yes Yes Same or outer

dangling pointers (see Table I). These rules avoid references from objects within
the heap or an immortal memory to objects within a scoped region, and from
objects within a scoped region to objects within another scoped region that is
nonouter.

The JVM must check for the assignment rules before executing an assign-
ment statement and throw an illegalAssignment() exception, if they are vio-
lated. This check includes the possibility of static analysis of the application
logic [Bernadat et al. 1998]. In the above example, illegal references are the
following two cases: from a field of an object within the heap or an immortal
region to an object within either myVTRegion or myLTRegion, or from a field of
an object within myVTRegion to an object within myLTRegion (see Figure 2).
The following assignment statement can then cause dangling pointers and, as a
consequence, are illegal references: A.field = B, A.field = C, D.field = B, D.field =
C, and B.field = C. On the other hand, there is no problem with all other possible
assignments.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

Hardware Support for Detecting Illegal References • 757

Fig. 2. Illegal references in the Figure 1 program example.

Note that the assignment rules in RTSJ avoid pointers from an object to an-
other object within a region with a live-time potentially shorter than the region
of the referenced object. Pointers from an object within the ImmortalMemory
instance to objects within the HeapMemory instance and vice versa are always
allowed.

1.2 Related Work

The design of real-time Java applications is already a problem. In particular,
memory management must be carefully designed to be compliant with real-time
constraints. In [Issarny et al. 2000], we present a study of the requirements for
embedded software environment aimed at wireless PDAs. These requirements
have been addressed through a middleware platform where, unlike traditional
JVMs, several applications run concurrently within a single JVM instance. For
the collection model, the idea that this paper presents, which consists of a dedi-
cated GC running within each application and a global real-time GC to reclaim
the objects created by the environment, as well as those shared among appli-
cations, is too complicated and inefficient. Implicit garbage collection comes
along with overhead regarding both execution time and memory consumption;
two levels of garbage collection makes it very poorly suited for small-sized em-
bedded real-time systems.

In [Higuera-Toledano 2004], we continue with the idea of running several
real-time Java applications within the same JVM by extending the memory-
management model of RTSJ to offer multiprocess execution. In the proposed
solution, there is a memory space accessible by all applications in the system,
which allows interprocess communication by using both the communication
model of standard Java (based on shared variables and monitors), and the spe-
cific classes of RTSJ that provide communication among real-time tasks and
threads. We have a distinct GC per application, but different from the scheme
presented in [Issarny et al. 2000]. Shared objects among applications are not
collected, which simplifies the resource management. We take this solution as
a trade-off between a more general solution, such as allowing activities to com-
municate using RMI, and forbidding all possible communication. To facilitate
code sharing, classes are stored within the same common memory space where
shared objects are allocated.

In RTSJ, the life of objects allocated in scoped regions is governed by the
control flow. To maintain the safety of Java and avoid dangling references,
the JVM must check for the assignment rules before executing an assignment
statement: objects within a scoped region can only be referenced by objects from
the same region or within an inner region, and objects within immortal regions
or within the heap cannot reference an object allocated in a scoped region.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

758 • M. T. Higuera-Toledano

Our solution introduces extra code for all bytecode instructions that operate on
references within other objects (or arrays) [Higuera-Toledano et al. 2000]. This
extra code, normally called write barrier, must be executed before updating the
object reference (i.e., when an instruction causes a reference from an X object
to a Y object). The write barrier code explores a scope stack, from the scope of
X (the active region) down to the scope of Y (an outer region). If the scope of Y
is not found in the stack (the bottom of the stack is reached), this is notified by
throwing an exception.

The aforementioned solution presents two problems: the high overhead in-
troduced by the dynamic check of illegal assignment for scoped memory regions,
and that this overhead must be bounded by limiting the nested scoped levels.
In order to reduce the execution time taken to check illegal references caused
by assignments among scoped regions, we present a solution to improve the
performance of write barriers [Higuera-Toledano 2003], which resorts to hard-
ware aid by exploiting existing hardware support for Java (i.e., the picoJava-II
microprocessor), and also combines with a specialized hardware, which allows
us to limit the nested scoped levels and reduces to zero the execution time to
explore the scope stack.

The picoJava-II microprocessor [Sun Microsystems 2000] has been discon-
tinued by Sun some time ago. This microprocessor was never released as a
product by Sun, but it has been licensed to several companies (e.g., Fujitsu,
IBM, LG, and NEC), which also did not produce a chip. However, picoJava-II is
the Java microprocessor most often cited in research papers and it still is a per-
fectly fine platform to explore new approaches. The aJile’s JEMCore [Hardin
2001] is a direct-execution Java processor that is available as both an IP core
and a stand-alone processor. It is based on the JEM2 Java chip developed by
Rockwell–Collins, which decided not to sell the chip on the open market. In-
stead, it licensed the design exclusively to aJile Systems. Komodo [Uhrig et al.
2002] is a multithreaded Java processor with a four-stage pipeline. It is intended
as a basis for research on real-time scheduling on a multithreaded microcon-
troller. JOP [Shoeberl 2005] is a hardware time-predictable Java platform for
embedded real-time systems, with small design that fits into a low-cost FPGA.
It is also a working processor, not merely a proposed architecture.

The contribution of our work in this article comes from the adaptation and
integration of the relevant solutions obtained in our previous work, in the con-
text of the RTSJ, based on the analysis of the parameters that are the most
influential in memory–management performance. We support several applica-
tions within the same JVM by introducing memory spaces in RTSJ. We resolve
illegal interregion assignment in RTSJ by using hardware support in order to
improve the write-barrier execution time. In addition, we have discussed the
time and memory overhead introduced by the resulting memory-management
solution within the KVM.

Another effort to partition the Java memory is described in [Bernadat et al.
1998]. In this model, the creation of a new heap is optional; the proposed
interface allows creating a new name-space, which shares the system heap,
rather than creating a new one. In order to avoid malicious cross-references
between private heaps, this solution uses both read and writes barriers. The

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

Hardware Support for Detecting Illegal References • 759

implementation of heap partitioning binds heaps to objects by adding a field in
the object header. The Java Os from Utah [Back et al. 1998] provides secure
and controlled accesses, by limiting direct sharing among applications. When
two activities want to communicate, they must share an object residing in the
common heap. Objects in the shared heap are not allowed to have pointers to
objects in any user heap. Attempts to assign to such pointers will result in an
exception, which is enforced by using write barriers, as in our proposed solution.

In order to avoid the problem with enforced write barriers, the solution pro-
posed in [Palacz et al. 2002] modifies the Isolate API by introducing two objects
called Portal and DeferreedPortal to communicate between Isolates, and a se-
curity manager providing hierarchical access rights. In this model, a parent can
grant and revoke the communication rights of its children. A different solution
to improve resource utilization consists of sharing libraries among JVMs [Wong
et al. 2003]. In this case, the challenge is to determine what to share and how to
share it in order to decrease both start-up time and memory footprint without
compromising the robustness of the system.

The solution proposed in [Whitaker et al. 2002] provides strong isolation
between services, both to enforce security and to control resource consumption.
In order to do that, this solution subdivides a physical machine into a set of
fully isolated protection domains. Each virtual machine is then confined to a
private namespace.

A reconfigurable virtual machine supporting multiple user environments
with varying degrees of criticality and privilege has been presented in [Jensen
et al. 1999]. This architecture provides hardware-enforced guarantees of re-
source separation and is based on the JEM-1 Java-based microprocessor.
Hardware-based Java platforms (e.g., [Hardin 2001]) provide efficient support
for bytecode execution, hard real-time, and also safe and secure multiple virtual
machine execution.

1.3 Paper Organization

The rest of this paper is organized as follows. We first present our basic ap-
proach, which includes write barriers to detect whether an application attempts
to create an illegal assignment to references inside or outside its memory space,
and a description of how memory spaces and scoped regions are supported
(Section 2). Next, we propose a hardware-based solution to improve the perfor-
mance of write barriers, and a specialized hardware that makes the time-cost
to detect illegal assignments across scoped regions negligible (Section 3). We
present basic modifications to the Java VM in order to make it aware of memory
regions, and evaluate the overhead introduced by write barriers in our solution
by instrumenting the KVM (Section 4). Finally, some conclusions and a sum-
mary of our contributions conclude this paper (Section 5).

2. SUPPORTING SEVERAL APPLICATIONS

In this section, the memory-management model of RTSJ is extended to of-
fer multiprocess execution. In the proposed solution, some memory objects
are accessible by all applications in the system. This allows interprocess

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

760 • M. T. Higuera-Toledano

communication by using both the communication model of Java based on shared
variables and monitors as well as the classes that the RTSJ specification pro-
vides to communicate real-time tasks and non-real-time threads.

2.1 Extending the Memory Class Hierarchy

In order to obtain multiprocess execution, we introduce the abstract class
MemorySpace supporting two subclasses: the CommonMemory class to support pub-
lic memory without application access protection and ProtectedMemory to define
application-specific memory with access protection. There is only one object in-
stance of the CommonMemory class, which is created at system initialization time,
and is a resource shared among all applications in the system. In contrast, a
new ProtectedMemory object is created when estabalishing a new application
and is a local resource protected from accesses of all other applications in the
system.

Creating a protected memory space implies the creation of both the local
heap and the local immortal memory regions of the corresponding application.
An application can allocate memory within its local heap, its immortal region,
several immortal physical regions, several scoped regions, and also within the
common memory space.

2.2 Sharing Common Resources

To facilitate code sharing, classes are stored within the common space (i.e.,
the CommonMemory.instance() object). Thus, all applications in the system can
access both code and data (i.e., class variables), of all classes. However, there
is a problem with the access to the class variables, declared as static in Java.
These variables must be shared by all the tasks of an application, but they
must be protected from the access of other activities. Thus, we maintain a copy
of the class variables in the local immortal memory of the application. Note
that in order to isolate the class variables of an application from accesses of
other applications, we maintain a copy of class variables for those application
using they. Since the goal is isolation, not replication, we must not maintain
copy coherence. Thus, when an application needs a new class, the class loader
checks if the class already exists within the common space:

� If NO, the class is loaded in the common space and copies of all class variables
are allocate within the application local heap,

� if YES, copies of all class variables are allocated within the application local
heap.

The same problem arises with class monitors (i.e., shared code related to
synchronization); these methods are declared in Java as static synchronize.
When a task enters a class monitor and is suspended by another task, if both
tasks are from the same application, there is no problem. The problem arises
if the two tasks are from different applications. To ensure mutual exclusion
among tasks from the same application, while avoiding other activities to be
affected, each application must maintain a separate copy of the monitor. The
solution is to allocate a copy of the static code within the immortal memory of

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

Hardware Support for Detecting Illegal References • 761

the application. As in the solution given in [Czajkowki et al. 2000], we maintain
a copy of both class variables and class monitors in the immortal region of each
application using the class, while maintaining only a single version of the class
code. This solution requires modifying the class loader.

2.3 Dynamic Detection of Illegal Assignments

An attempt to create a reference to an object Y into a field of another object X
requires a different treatment, depending on the space to which the object Y
belongs:

� Case A: the referenced object is within the common space. The assignment
is allowed and nothing needs to happen.

� Case B: the referenced object is within a protected space. For intraspace refer-
ences, we must take into account the assignment rules imposed by RTSJ (see
Table I). For interspace references, we raise a SpaceViolated() exception.

In order to detect illegal assignments to scoped regions, every thread is asso-
ciated with a region-stack containing all scoped memory regions that the thread
can hold. Every scoped region is associated with a reference count that keeps
track of the use of the region by tasks. The memory region at the top of the
stack is the active region for the task, whereas the memory region at the bot-
tom of the stack is the outermost scoped region for the task. The default active
region is the heap. When a task does not use any scoped region, the region-
stack is empty and the active region is the heap or an immortal memory region.
Checking nested regions requires two steps:

1. In a first step, the region-stack is explored top down to find the memory
region to which the X object belongs. If it is not found, a MemoryAccessError()
exception1 is thrown.

2. A second step explores the region-stack again, starting at the region that
contains the X object, and the objective is to find the region that contains
the Y object (i.e., the region to which Y belongs must be outer to the region
to which X belongs). If the scoped region of Y is found, the assignment is
allowed.

Take as an example, the code given in Figure 1. Where B array is allocated
within the myVTRegion scoped region (line 12) and C array is allocated within
the mLTRegion scoped region (line 14), and mLTRegion scoped region is inner
to myVTRegion scoped region. Note that the myTask real-time thread entered
mLTRegion when myVTRegion was the active region (line 13). The algorithm
works as follows:

� Assignment C[i]=B[j] returns true (see Figure 3a).
� Assignment B[i]=C[j] raises the IllegalAsignment() exception (see

Figure 3b).

1This exception is thrown upon any attempt to refer to an object in an inaccessible MemoryArea

object.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

762 • M. T. Higuera-Toledano

Fig. 3. First (look up X) and second (look up Y) explorations of the region-stack.

Fig. 4. Write-barrier code detecting illegal assignment.

Figure 4 presents the write-barrier pseudocode that is introduced in the in-
terpretation of the putfield, aastore, and putstatic bytecodes. The spaceType()
function returns common or protected depending on the type of space to which
the object parameter belongs. The spaceName() function returns the space
identifier to which the object parameter is allocated. The regionType() func-
tion returns heap, immortal, or scoped, depending on the type of the region to
which the object belongs. The nestedRegions(X,Y) function returns true if the
scope of the region that contains the Y object is the same or outer to the scope
of the region that contains X.

The header of the object must specify both the space and the region to which
the object belongs. When an object/array is created by executing the new or
newarray bytecodes, it is then associated with the scope of both the active space
and the active region. Local variables are also associated with both the active
region scope and the active space scope.

3. USING HARDWARE SUPPORT

To efficiently implement a generational or an incremental garbage collector,
picoJava offers hardware support for write barriers through memory segments.
The hardware checks all stores of an object reference if this reference points
to a different segment (compared to the store address). In this case, a trap is
generated and the garbage collector can take the appropriate action. Two addi-
tional reserved bits in the object reference can be used for a write-barrier trap.
In this section, we use the write-barrier hardware support that the picoJava-II
microprocessor provides. Next, we introduce a specialized hardware to improve
the write-barrier performance of scope memory regions.

3.1 Supporting Memory Spaces

Upon each instruction execution, the picoJava-II core checks for conditions that
may cause a trap. From the standpoint of GC, this microprocessor checks for the
occurrence of write barriers and indicates them using the gc notify trap. This
trap is triggered under certain conditions when assigning an object reference
to an object’s field (i.e., when executing bytecodes requiring write barriers),

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

Hardware Support for Detecting Illegal References • 763

Fig. 5. Page-based write-barrier mechanism.

and governs two types of write-barrier mechanism: page- and reference-based.
Whereas the reference-based write barriers are used to implement incremental
collectors, the page-based write barriers are used to implement generational
collectors.

The page-based barrier mechanism of the picoJava-II was designed specifi-
cally to assist generational collectors based on the train algorithm [Wilson and
Johnston 1993], which divides the object space into a number of fixed blocks
called cars, and arranges the cars into disjoint sets (trains). This algorithm
tracks references across different cars within the same train. The conditions
that generate the gc notify trap are governed by the values of the GC CONFIG
register and the page-based status register (PSR). In the GC CONFIG register,
the TRAIN MASK field (bits <31:21>) allows us to know whether both objects
in an assignment X and Y belong to the same train, whereas the CAR MASK
field (bits <20:16>) detects whether they belong to different cars. If the garbage
collection enable (GCE) bit of the PSR register is set, then page-based write
barriers are enabled (see Figure 5).

In order to reduce the cost of object relocation, the strategy adopted by the
Sun JDK and SDK is to add a nonmoving handle (i.e., a reference) to each
object. Thus, each object has a reference that points to the location of the object
header (see Figure 6).

When an object is relocated, its handle is updated. Thus, relocating objects
is transparent to the application program, which always accesses objects using
their nonmoving reference. In picoJava-II, the ADDRESS field (bits <29:2>)
of the object reference always points to the location of the object header, and
is divided in two subfields: the TRAIN field (bits <29:19>) and the CAR field
(bits <18:14>). The, page-based write barriers in picoJava-II uses the object
reference, not the object header, which makes a physical division of the object
memory address.

If, for example, we initialize the REGION MASK field as 0000000000, and
the CAR MASK field as 11111, we have only a train divided in 32 cars (spaces),
each one divided in pagesof 16 KB (see Figure 7). Our solution uses the picoJava-
II page-based mechanism to detect references across different memory spaces
by configuring only one train and mapping each space in a car (i.e., we have as
maximum 32 memory spaces divided in pages of 16 KB and each memory space
can hold 1012).

The page-based mechanism allows us to save the execution of the write-
barrier code when both objects X and Y belong to the same space (i.e., for in-
traspace assignments). Write barriers only need to be executed for references
across spaces (i.e., for interspace assignments). Figure 8 shows the exception
code associated with the gc notify trap, which must be executed for interspace
assignments. Note that as consequence of spatial locality property, intraspace

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

764 • M. T. Higuera-Toledano

Fig. 6. Object structure with a nonmoving handler.

Fig. 7. Heap divided in trains and cars: CAR MASK with 11111.

assignments are more frequent than interspace assignments. An application
makes an interspace assignment for two purposes: to communicate with an-
other application by sharing an object within the common space or to violate the
protected space of another application. Since we consider that both communica-
tion among applications and violation spaces are infrequent, the performance
improvement introduced by our solution is relevant.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

Hardware Support for Detecting Illegal References • 765

Fig. 8. Detecting illegal assignments across spaces.

Fig. 9. Reference-based write barriers.

This solution is efficient, but not very flexible, because we must configure
the system to determine the virtual space memory map, which can be unprac-
tical for RTSJ classes dealing with I/O mapped memory (e.g., ImmortalPhysi-
calMemory). It also requires the size of the memory space to be a multiple of the
car size, which may introduce internal fragmentation. In order to avoid these
problems, we can add a word to the header of the object to support both the
TRAIN and CAR fields (i.e., the memory space to which the object belongs), and
modify the page-based hardware support of picoJava-II to use the header of the
object in the write-barrier mechanism instead of the object reference. Thus the
memory division in spaces is logical, not physical.

3.2 Supporting Memory Regions

The reference-based write barriers of picoJava-II can be used to implement
incremental collectors based on the tricolor algorithm [Baker 1991]. In this
terminology, a white object means either garbage or that it has not been reached
yet, a grey object means that it has been marked as reachable, but its contents
have not yet been scanned; once all the pointers of the grey object are marked as
reachable (grey), it is colored black. In order to synchronize the application and
the collector, the tricolor invariant is introduced: no black objects have references
to white objects. The application must then preserve this invariant by changing
the colors of the nodes affected, if necessary.

The picoJava-II reference-based write barriers avoid executing write-barrier
code when the object assignment does not attempt to violate the tricolor in-
variant. This mechanism also, allows us to improve the performance of both
the collector and the application by disabling execution of write barriers when
disabling the collector (see Figure 9). In picoJava-II, the GC TAG field (bits
<31:30>) of the object reference supports the reference-based write barriers
supporting an incremental collector, which traps when a white object is written
into a black object (e.g., the GC TAG field for black objects is set to 11 and for
white objects is 00).

In order to use this hardware mechanism, we use the GC TAG field to sup-
port the type of the memory region to which the object belongs (e.g., 00 for
the heap, 01 for the immortal region, 10 for immortal physical regions, and 11

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

766 • M. T. Higuera-Toledano

Fig. 10. Write-barrier code detecting illegal interregion assignment.

Fig. 11. Code for the gc notify trap.

for scoped regions) and we configure the GC CONFIG.WB VECTOR to enable
the gc notify exception for references from an object within a nonscoped region
to an object within a scoped one. In addition, we program the associated ex-
ception handler to execute the write-barrier code needed to detect the illegal
assignments for scoped regions (see Figure 10).

This solution avoids the execution of write barriers for valid interregion ref-
erences that do not require any action (i.e., for references to an object within
an immortal region or within the heap). In order to improve the performance
of our solution, we are interested in reducing the execution time taken to check
illegal references caused by assignments among scoped memory regions, which
depend on the region stack size. In Higuera-Toledano [2003], we have intro-
duced hardware for executing the nestedRegion(X,Y) function, which supports
the region stack of the active task in an associative memory.

Similar to the write-barriers mechanism of picoJava-II, our proposed hard-
ware checks for the occurrence of illegal assignments across scoped regions
and indicates them using the mr notify trap. This hardware basically consists
of an associative memory containing a mark bit per entry, called Present-Bit
(P), which indicates whether the corresponding entry must be considered as an
element of the region stack. If P is set, the corresponding entry is an element
of the region stack of the active task. If it is reset, the corresponding entry is
considered empty. This bit is used in the first step of the algorithm, when the
region of object X is looked up in the region stack. Each entry contains also a
valid bit called Valid-Bit (V), which indicates whether the corresponding entry
must be considered at the second step of this algorithm, when the region of
object Y is looked up in the region stack. When V is set, the entry contains an
outer region to the region that contains X.

The condition under which the mr notify trap is generated can be governed
by a reserved bit in the PSR register, that we call memory region enable (MRE).

Each time a task is scheduled for execution, all entries of the SCOPED
STACK must be configured with the scoped region stack that the scheduled

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

Hardware Support for Detecting Illegal References • 767

task can access. This configuration introduces some overhead at context-switch
time. In order to access/configure the SCOPED STACK memory, we extend
the picoJava-II instruction set by introducing the priv read scoped stack and
priv write scoped stack bytecodes, whose operands are the entry index and a
memory address to load/store the region identifier.

4. EVALUATING THE OVERHEAD

In this section, we estimate the write-barrier overhead introduced by the pro-
posed solutions. We are interested in fixing an upper bound for the overhead
introduced by: (1) checking an illegal inter-space assignment, (2) checking an
illegal inter-region assignment, and (3) exploring the region stack. To quantify
the overhead of write barrier, two measures are combined: the number of events
(Events) and the measured cost of the event (Cost).

4.1 Quantifying Events

All objects created by a JVM are allocated within the heap (i.e., dynamic mem-
ory that in RTSJ may be either the heap or another memory region and, in
our extended RTSJ, may be also the common space); only primitive types are
allocated in the run-time stack. In most applications of the SPECjvm98 bench-
mark suite [Wong et al. 2003], less than one-half (45%) of the references are
to objects within the heap rather than primitive types (e.g., bytes or integers),
which the other one-half is to either the Java or the native stack. About 35% of
the total executed bytecodes requires an object reference, where typically 70%
is for load operations and 30% for store operations [Kin and Hsu 2000]. Then,
15% (0.45*0.35) of the bytecodes reference an object within the heap and 30%
of these bytecodes make assignment operations. References to objects outside
the stack require write barriers, whose probability is 5% (0.15*0.30).

Instead of using the SPECjvm98 benchmark, which is not compatible with
the KVM, we use an artificial collector benchmark. In this benchmark, two
data structures of the same size are kept around during the entire process:
a tree containing many pointers and a large array containing integers. This
benchmark executes 262 millions bytecodes and allocates 408 MB. Since the
number of bytecodes that perform a write-barrier test is 15 millions, we conclude
that 5% of executed bytecodes perform a write-barrier test; where 92.4 of the
references are to object variables (6.6% by aastore 39.6% by putfield, and 46.2%
by putfield fast: 46.2%), and 7.6% to class variables (6.6% by putstatic and 1%
by putstatic fast). Note that our solution allocates the object variables within
the heap or a scoped region and the class variables within an immortal region.

In order to estimate the upper bound of write-barriers events, let s be the
percentage of objects allocated by a task within scoped regions, and v the per-
centage of interspace assignments found in the total assignments made by the
task. We assume that each object in the system has an equal probability of being
referenced. Table II shows the maximum probability to execute write barriers
when a task makes an assignment.

Note that in the software-based solution, checks to detect whether an ap-
plication task attempts to violate the memory space of another application are

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

768 • M. T. Higuera-Toledano

Table II. Upper Bounds on Write-Barrier Events

Event Software Hardware

Interspace checking 1 v + (1−v)s

Interregion checking (1−v) (1−v)s

Table III. Average Conditions Evaluated per

Write-Barrier Event

Cost Software Hardware

Interspace checking 2 1

Interregion checking 1+n/2 0

always required; whereas the hardware-based solution saves violation-space
checking whenever both objects X and Y belong to the same memory space and
the Y object is not within a scoped region (i.e., the Y object is not within the
heap or an immortal region, or within the common space).

4.2 Quantifying Cost

In order to quantify the Cost parameter, we consider the percentage of the
execution time consumed by our write-barrier code in an assignment. For scoped
regions, we must further consider the cost to have nested scoped levels, i.e.,
the cost to execute the nestedRegions(X,Y) function that is proportional to the
number n of inner levels in the region-stack. We compute the execution time of
write barriers as follows:

WriteBarrier Cost = Max Conditions ∗ Condition Cost/Assignment Cost

Max Conditions is the maximum number of evaluated conditions (see Table III),
and Condition Cost andAssignemnt Cost are, respectively, the execution time
to evaluate a condition, and the execution time of the original assignment code,
which are constant for a given JVM implementation.

Our hardware-based solution then reduces both the number of events that
require checks and the number of evaluated conditions required by each check.
As consequence of both reductions, the average write-barrier cost per assign-
ment has been reduced in more than 50% for interspace checks (i.e., from 2 to
v + s − v*s; note that v< = 1 and s< = 1), and to 0 for interregion checks. More
important, the write-barrier overhead does not depend on the number of nested
regions entered by a task; note that determinism is an important property in
real-time systems.

4.3 Memory Footprint

We have limited the number of memory spaces to 32. We consider that spaces
are paged, the page size is 16 KB, and the maximum number of pages that a
space can hold has been limited to 32. To limit the worst case for write-barrier
execution time, we must also limit the number of scoped nested levels. Since
we must take the single-parent rule of scoped regions [Bernadat et al. 1998]
into account, we must limit the maximum number of scoped regions that an
application can hold. We have fixed this limit to 30, which allows us to support
the region by using 5 bits and the region stack of each task in 10 words.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

Hardware Support for Detecting Illegal References • 769

Fig. 12. Configuring page-based write barriers.

In order to adapt the KVM objects to the picoJava-II microprocessor, we add
a word to the object header of the KVM. The added word includes the follow-
ing fields: REGION TYPE <31:30> (GC TAG in picoJava-II), the REGION ID
<29:25> and the SPACE ID <18:14> (CAR ADDRESS in picoJava-II); where
the REGION ID and the SPACE ID fields specify, respectively, the region and
space to which the object belongs and the REGION TYPE specifies the region
type. This increases the memory consumption in a word per object. We mod-
ify the original header format of KVM objects (i.e., SIZE <31:8>, TYPE <7:2>,
MARK BIT <1>, and STATIC BIT <0>) to support the identification of both the
space and the region to which the object belongs, and also the type of the region
(i.e., REGION TYPE <31:30>, SPACE ID <29:19>, REGION ID <18:14>, SIZE
<13:2>, MARK BIT <1>, and STATIC BIT <0>). Note that the maximum size
of the object has been reduced from 16 MB to 2 KB; given the small average
object size that the SPECJVM98 [SPEC JVM, 98] applications present (i.e.,
about 32 bytes) [Kin and Hsu 2000], we optimize for small objects. The TYPE
field is also not required when using a nonaccurate GC.

We maintain a region-structure of two words for each memory region object
in the system with the following format: REGION TYPE <31:30>, REGION ID
<29:25>, OUTER REGION ID <24:20>, REFERENCE COUNT <19:16>, SIZE
<15:10>, SPACE ID <9:5>, and PAGE <4:0>; where the REFERENCE COUNT,
the SIZE, and the PAGE fields allow us to know, respectively: the number of
tasks that can allocate or reference objects in the region, the size of the region
in bytes, and the page supported in the region. The region structure increases
the memory footprint by a maximum of 128 bytes. Note that these region struc-
tures form a scope-tree [Higuera-Toleda 2004], where the heap is the root and
immortal regions are not included.

4.4 Configuring Write Barriers

Considering 32 spaces and a page size of 16 KB, we introduce (1) a routine
to configure both page-based and reference-based write barriers (Figure 12),
(2) a routine to enable page-based write barriers (Figure 13a) and a routine to
disable page-based write barriers (Figure 13b), (3) a routine to enable memory

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

770 • M. T. Higuera-Toledano

Fig. 13. Enabling/disabling page-based write barriers.

Fig. 14. Enabling/disabling region-based write barriers.

region write barriers (Figure 14a) and a routine to disable memory region write
barriers (Figure 14b).

5. CONCLUSIONS

Regarding our software-based solution, we found only two problems: the high
overhead introduced by the dynamic checking for illegal assignment and that
the introduced overhead must be bounded by limiting the nested scoped lev-
els. Our solution to improve the performance of memory management resorts
to hardware aid by exploiting existing hardware support for Java (i.e., the
picoJava-II microprocessor). The performance of this solution has been highly
improved. The introduced time overhead has been reduced to zero for allowed
references within an immortal region or within a shared scoped region, and
nearly zero for references within the local heap. By using specialized hardware,
we can also considerably reduce the write-barrier cost for references within a
nonshared scoped region; we omit write barriers in native code, which may be
solved by forcing the native code to register their writes explicitly. This paper
has presented a memory-management design solution for extending the RTSJ
specification to execute several applications concurrently in the same JVM. To
facilitate code sharing, classes are stored in the immortal common space. The
partition of memory allows us to invoke several collectors concurrently, where
the reclamation rate can be different for each application.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

Hardware Support for Detecting Illegal References • 771

REFERENCES

BAKER, H. G. 1991. The treadmill: Real-time garbage collection without motion sickness. In Proc.
of Conference on Object and Oriented Programming, Systems Languages and Applications OOP-

SLA.

BACK, G., TULLMANN, P., STOLLER, L., HESIENH, W. C., AND LEPREAU, J. 1998. Java operating systems:

Design and implementation. Technical rep. Department of Computer Science, University of Utah,
http://www.cs.utah.edu/projects/flux (Aug).

BERNADAT, P., LAMBRIGHT, D., AND TRAVOSTINO, F. 1998. Towards a resource safe Java for service

guarantees in uncooperative environments. In Proceedings of the IEEE Workshop on Program-
ming Languages for Real-Time Industrial Applications.

BOLLELLA, G., GOSLING, J., BROSGOL, B., DIBBLE, P., FURR, S., HARDIN, D., AND MTURNBULL. (The Real-
Time for Java Expert Group). Real-Time Specification for Java. RTJEG 2002. http://www.rtj.

org.

CZAJKOWKI, G. 2000. Application isolation in the Java virtual machine. In Proc. of Conference
on Object and Oriented Programming, Systems Languages and Applications pages 354–366.

OOPSLA, ACM SIGPLAN (Oct.).

HARDIN, D. S. 2001. Real-time objects on the bare metal. An efficient hardware realization of

the Java virtual machine. In Proceedings of the 4th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC).

HIGUERA-TOLEDANO, M. T., ISSARNY, V., BANATRE, M., CABILLIC, G., LESOT, J. P., AND PARAIN, F. 2004.

Memory management for real-time Java: An efficient solution using hardware support. Real-
Time Systems Journal 26, 1.

HIGUERA-TOLEDANO, M. T. 2004. Illegal References in a real-time Java concurrent environment. In

Proceedings of the 7th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC).

HIGUERA-TOLEDANO, M. T. 2003. Hardware-based solutions detecting illegal references in real-

time Java”. In Proceedings of 15th Euromicro Conference on Real-Time Systems.

ISSARNY, V., BANATRE, M., WEISS, F., WEIS, CABILLIC, G., COURDEC, P., HIGUER-TOLEDANO, M. T., AND

PARAIN, F. 2000. Providing an embedded software environment for wireless PDAs. In Proceeg-
ings of the Ninth ACM SIGOPS European Workshop—Beyond the PC: New Challenges for the
Operating System (Sept.).

JAVA COMMUNITY PROCESS. 2003. Application Isolation API Specification. http://jcp.org/jsr/
detail/121.jsp.

JENSEN, D. W., GREVE, D. A., AND WILDING, M. M. Secure Reconfigurable Computing. Advanced Tech-

nology Center Advanced Technology Center. http://www.klabs.org/richcontent/MAPLDCon99,

1999.

KIN, S. AND HSU, Y. 2000. Memory system behaviour of Java programs: Methodology and analysis.

In Proceedings of the ACM Java Grande 2000 Conference.
PALACZ, K., CZAJKOWSKI, G., DAINES, L., AND VITEK, J. 2002. Incommunicado: Efficient communica-

tion for isolates. In Proceedings of the Conference on Object and Oriented Programming, Systems
Languages and Applications ACM OOPSLA (Nov.).

PETIT-BIANCO, A. AND TROMEY, T. 1998. Garbage collection for Java in embedded systems. In Pro-
ceedings of IEEE Workshop on Programming Languages for Real-Time Industrial Applications
(Dec.).

SPRECJVMS98. 1998. Standard Performance Evaluation Council. SPEC JVM98 benchmarks.

Technical report. http://www.spec.org/osg/jvm98.

SHOEBERL, M. 2005. Design and implementation of an efficient stack machine. In Proceed-
ings of the 12th IEEE Reconfigurable Architecture Workshop, RAW 2005, Denver, Colorado

(Apr.).

SUN MICROSYSTEMS. 2000. picoJava-II Programmer’s Reference Manual. Technical Report. Java

Community Process (May). http://java.sun.com.

SUN MICROSYSTEMS. 2000. KVM Technical Specification. http://java.sun.com (May).

UHRIG, S., LIEMKE, C., PFEFFER, M., BECKER, J., BRINKSCHULTE, U., AND UNGERER, TH. 2002. Imple-

menting real-time scheduling within a multithreaded Java microcontroller. In Proceedings of the
6th Workshop on Multithreaded Execution, Architecture and Compilation MTEAC-6.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

772 • M. T. Higuera-Toledano

WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. 2002. A scalable isolation kernel. In Proceedings of
the Tenth ACM SIGOPS European Workshop, Saint-Emilion, France (Sept.).

WILSON, P. R. AND JOHNSTON, M. S. 1993. Real-time non-copying garbage collection. In Proc. of
Conference on Object and Oriented Programming, Systems Languages and Applications ACM

OOPSLA (Workshop on Garbage Collection and Memory Management.) (Sept.).

WONG, B., CZAJKOWSKI, G., AND DAYMES, L. 2003. Dynamically loaded classes as shared libraries:

An approach to improving virtual machine scalability. In Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS).

Received May 2004; revised July 2005; accepted January 2006

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

