
Influence of Grid Economic Factors on
Scheduling and Migration

Rafael Moreno-Vozmediano1 and Ana B. Alonso-Conde2

1 Dept. de Arquitectura de Computadores y Automática,
Universidad Complutense. 28040 - Madrid, Spain

Tel.: (+34) 913947615 - Fax: (+34) 913947527
rmoreno@dacya.ucm.es

2 Dept. Economía Financiera, Contabilidad y Comercialización,
Universidad Rey Juan Carlos. 28032 - Madrid, Spain

Tel./Fax: (+34) 914887788
abac@fcjs.urjc.es

Abstract. Grid resource brokers need to provide adaptive scheduling
and migration mechanisms to handle different user requirements and
changing grid conditions, in terms of resource availability, performance
degradation, and resource cost. However, most of the resource brokers
dealing with job migration do not allow for economic information about
the cost of the grid resources. In this work, we have adapted the schedul-
ing and migration policies of our resource broker to deal with different
user optimization criteria (time or cost), and different user constraints
(deadline and budget). The application benchmark used in this work has
been taken from the finance field, in particular a Monte Carlo simulation
for computing the value-at-risk of a financial portfolio.

1 Introduction

A grid is inherently a dynamic system where environmental conditions are sub-
jected to unpredictable changes: system or network failures, addition of new
hosts, system performance degradation [1], variations in the cost of resources [2],
etc. In such a context, resource broker becomes one of the most important and
complex pieces of the grid middleware. Efficient policies for job scheduling and
migration are essential to guarantee that the submitted jobs are completed and
the user restrictions are met.

Most of the resource brokers dealing with job migration face up to the prob-
lem from the point of view of performance [3] [4] [5]. The main migration policies
considered in these systems include, among others, performance slowdown, tar-
get system failure, job cancellation, detection of a better resource, etc.

However, there are hardly a few works that manage job migration under
economic conditions [6] [7]. In this context, new job migration policies must
be contemplated, like the discovery of a new cheaper resource, or variations
in the resource prices during the job execution. There are a broad variety of

M. Daydé et al. (Eds.): VECPAR 2004, LNCS 3402, pp. 274–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Influence of Grid Economic Factors on Scheduling and Migration 275

reasons that could lead resource providers to dynamically modify the price of
their resources, for example:

– Prices can change according to the time or the day. For example, the use of
a given resource can be cheaper during the night or during the weekend.

– Prices can change according to the demand. Resources with high demand
can increase their rates, and vice versa.

– A provider and a consumer can negotiate a given price for a maximum usage
time or a maximum amount of resources consumed (CPU, memory, disk,
I/O, etc.). If the user jobs violate the contract by exceeding the time or the
resource quota, the provider can increase the price.

In this work we have extended the GridWay resource broker capabilities [1] [3] to
deal with economic information and operate under different optimization criteria:
time or cost, and different user constraints: deadline and/or budget.

This paper is organized as follows. Section 2 describes the GridWay frame-
work. In Section 3 we analyze the extensions to the GridWay resource broker
to support scheduling and migration under different user optimization criteria
(time optimization and cost optimization), and different user constraints (cost
limit and time limit). Section 4 describes the experimental environment, includ-
ing the grid testbed and the application benchmark, taken from the finance field
[12]. In Section 5 we show the experimental results. Finally, conclusions and
future work are summarized in Section 6.

2 The GridWay Resource Broker

The GridWay (GW) framework [1] [3] is a Globus compatible environment,
which simplifies the user interfacing with the grid, and provides resource bro-
kering mechanisms for the efficient execution of jobs on the grid, with dynamic
adaptation to changing conditions.

GW incorporates a command-line user interface, which simplifies significantly
the user operation on the Grid by providing several user-friendly commands for
submitting jobs to the grid (“gwsubmit”) along with their respective config-
uration files (job templates), stopping/resuming, killing or re-scheduling jobs
(“gwkill”), and monitoring the state and the history of the jobs (“gwps” and
“gwhistory”). For a given job, which can entail several subtasks (i.e., an array
job), the template file includes all the necessary information for submitting the
job to the grid:

– The name of the executable file along with the call arguments.
– The name of the input and output files of the program.
– The name of the checkpoint files (in case of job migration).
– The optimization criterion for the job. In this implementation, we have in-

corporated two different optimization criteria: time or cost.
– The user constraints. The user can specify a time limit for its job (deadline),

as well as a cost limit (budget).

The main components of the GW resource broker are the following:

276 R. Moreno-Vozmediano and A.B. Alonso-Conde

2.1 Dispatch Manager and Resource Selector

The Dispatch Manager (DM) is responsible for job scheduling. It invokes the
execution of the Resource Selector (RS), which returns a prioritized list of can-
didates to execute the job or job subtasks. This list of resources is ordered
according to the optimization criterion specified by the user.

The DM is also responsible for allocating a new resource for the job in case of
migration (re-scheduling). The migration of a job or job subtask can be initiated
for the following reasons:

– A forced migration requested by the user.
– A failure of the target host.
– The discovery of a new better resource, which maximizes the optimization

criterion selected for that job.

2.2 Submission Manager

Once the job has been submitted to the selected resource on the grid, it is
controlled by the Submission Manager (SM). The SM is responsible for the job
execution during its lifetime. It performs the following tasks:

– Prolog. The SM transfers the executable file and the input files from the
client to the target resource

– Submission. The SM monitors the correct execution of the job. It waits for
possible migration, stop/resume or kill events.

– Epilog. When the job execution finishes, the SM transfers back the output
files from the target resource to the client.

3 Scheduling and Migration Under Different User
Specifications

We have adapted the GW resource broker to support scheduling and migration
under different user optimization criteria (time optimization and cost optimiza-
tion), and different user constraints (budget limit and deadline limit). Next, we
analyze in detail the implementation of these scheduling alternatives.

3.1 Time Optimization Scheduling and Migration

The goal of the time optimization criterion is to minimize the completion time
for the job. In the case of an array job, this criterion tries to minimize the overall
completion time for all the subtasks involved in the job.

To meet this optimization criterion, the DM must select those computing
resources being able to complete the job – or job subtasks – as faster as possible,
considering both the execution time, and the file transfer times (prolog and
epilog). Thus, the RS returns a prioritized list of resources, ordered by a rank
function that must comprise both the performance of every computing resource,

Influence of Grid Economic Factors on Scheduling and Migration 277

and the file transfer delay. The time optimization rank function used in our RS
implementation, is the following:

TR(r) = PF (r)(1 − DF (r)) (1)

Where

TR(r) is the Time-optimization Rank function for resource r
PF (r) is a Performance Factor for resource r
DF (r) is a file transfer Delay Factor for resource r

The Performance Factor, PF (r), is computed as the product of the peak
performance (MHz) of the target machine and the average load of the CPU in
the last 15 minutes. The Delay Factor, DF (r), is a weighted value in the range
[0-1], which is computed as a function of the time elapsed in submitting a simple
job to the candidate resource – for example, a simple Unix command, like “date”
– and retrieving its output.

The resource selector is invoked by the dispatch manager whenever there
are pending jobs or job subtasks to be scheduled, and also at each resource
discovery interval (configurable parameter). In this case, if a new better resource
is discovered, which maximizes the rank function, the job can be migrated to
this new resource. To avoid worthless migrations, the rank function of the new
discovered resource must be at least 20% higher than the rank function of the
current resource. Otherwise the migration is rejected. This condition prevents
from reallocating the job to a new resource that is not significantly better than
the current one, because in this case the migration penalty time (transferring
the executable file, the input files, and the checkpoint files) could be higher than
the execution time gain.

3.2 Cost Optimization Scheduling and Migration

The goal of the cost optimization criterion is to minimize the CPU cost consumed
by the job. In case of an array job, this criterion tries to minimize the overall CPU
consumption for all the job subtasks. In this model we have only considered the
computation expense (i.e. the CPU cost). However, other resources like memory,
disk or bandwidth consumption could be also incorporated to the model.

To minimize the CPU cost, the resource selector must know the rate of every
available resource, which is usually given in the form of price (Grid $) per second
of CPU consumed. These rates can be negotiated with some kind of trade server
[8] [9], and different economic models can be used in the negotiation [10]. Once
the resource selector has got the price of all the resources, it returns an ordered
list using the following rank function:

CR(r) =
PF (r)

Price(r)
(2)

278 R. Moreno-Vozmediano and A.B. Alonso-Conde

CR(r) is the Cost-optimization Rank function for resource r
PF (r) is a Performance Factor for resource r (similar to the time-

optimization scheduling)
Price(r) is the CPU Price of resource r, expressed in Grid $

per (CPU) second

It is important to point out that the CPU Price of the resource, Price(r), can
not be considered by itself as an appropriate rank function, since the total CPU
cost, which is the factor to be minimized, is given by the product of the CPU
price and the execution time. In this way, a low-priced but very slow resource
could lead to a higher CPU consumption than another more expensive but much
faster resource. So the most suitable resource is that one that exhibits the best
ratio between performance and price.

As in the previous case, the resource selector is invoked by the dispatch man-
ager whenever there are pending jobs to be scheduled, an also at each resource
discovery interval. If a new better resource is discovered, whose rank function
exceeds more than 20% the current resource rank value, then the job is migrated
to that new resource.

3.3 Scheduling and Migration Under User Constraints
(Budget/Deadline Limits)

Independently of the optimization criterion selected (time optimization or cost
optimization), the user can also impose a budget and/or a deadline limit. In
this case, the resource broker must be able to minimize the specific optimization
user criterion (time or cost), but without exceeding the budget or deadline limits.
To implement this behavior, the RS uses the same rank functions - (1) or (2),
depending on the optimization criterion - to get an ordered list of candidates,
but in addition, it must be able to estimate if each candidate resource meets the
user budget and/or deadline limits. Otherwise, the specific resource can not be
eligible for executing the given task.

These estimations have been implemented exclusively in array jobs, since we
make use of the known history of the first executed subtasks to estimate the cost
or deadline of the pending subtasks for every available resource.

First we analyze the model developed for job scheduling and migration under
budget limit. Let:

BL Budget Limit imposed by the user
BC(r, s, t) Budget Consumed by resource r to execute task s, at time t
NC(r, t) Number of tasks completed by resource r at time t
NP (t) Total Number of Pending tasks (not started) at time t
NS(t) Total Number of Started tasks, but not completed, at time t

The Budget Available at time t, BA(t), is

BA(t) = BL −
∑

∀s,∀r

BC(r, s, t) (3)

Where

Influence of Grid Economic Factors on Scheduling and Migration 279

Assuming that, in average, the started tasks have been half executed, the average
Budget Available per pending task at time t, BA(t) , is estimated as

BA(t) =
BA(t)

NP (t) + NS(t)
2

(4)

On the other hand, the average Budget per task Consumed by resource r at time
t, BC(r, t) , is

BC(r, t) =
∑

∀s BC(r, s, t)
NC(r, t)

(5)

If the average budget per task consumed by resource r is higher than the average
budget available per pending task, i.e.,

BC(r, t) > BA(t) (6)

then it is assumed that resource r is not eligible for executing a new task at the
current time t.

It is obvious that this budget estimation model can not be applied when
NC(r, t) = 0, so it is only useful for array jobs. In fact, when the first subtasks
of the array are scheduled, there is no information about the average budget
consumed by each resource, and hence every available resource is considered an
eligible candidate. For the subsequent subtasks, the historical information about
the average budget consumed by a given resource is used to estimate whether it
is likely to violate the user budget limit. If so, the resource is excluded from the
candidate list.

Similarly, we have developed a model for scheduling and migration under
deadline limit. Let:

DL Deadline Limit imposed by the user (expressed as maximum
elapsed time, in seconds)

TC(r, s) Time consumed by resource r for completing task s
NC(r, t) Number of tasks completed by resource r at time t

The Remaining Time at time t, TR(t), is

TR(t) = DL − t (7)

The average time per task consumed by resource r, TC(r) , is

TC(r) =
∑

∀s TC(r, s)
NC(r, t)

(8)

If the average time per task consumed by resource r is higher than the remaining
time, i.e.,

TC(r) > TR(t) (9)

then resource r is not eligible for executing a new task at the current time t.
As in the previous case, this time estimation model is only applicable for array

jobs, when there is available historical information about the time consumed by
a given resource, and hence NC(r, t) > 0.

280 R. Moreno-Vozmediano and A.B. Alonso-Conde

4 Experimental Environment

In this section we analyze the grid testbed and the application benchmark used
in our experiments.

4.1 Grid Testbed

The main features of the computational resources employed in our grid testbed
are summarized in Table 1.

Table 1. Characteristics of the machines in the experimental testbed

Hostname Architecture / OS Perf. Factor Delay Factor CPU Price Slots
(peak MHz) (x 100) (Gris $)

hydrus.dacya.ucm.es i686 / Linux 2539 2 20 1
cygnus.dacya.ucm.es i686 / Linux 2539 2 20 1
cepheus.dacya.ucm.es i686 / Linux 650 3 5 1
aquila.dacya.ucm.es i686 / Linux 662 3 5 1
belle.cs.mu.oz.au i686 / Linux 2794 15 5 2

Resources hydrus, cygnus, cepheus, and aquila, which are located in Spain
(Computer Architecture Dept., Univ. Complutense of Madrid), are uniprocessor
systems, and it is assumed that they have only one available slot, i.e., only
one task can be issued simultaneously to each computer. Resource belle, which
is located in Australia (Computer Science Dept., Univ. of Melbourne), is a 4-
processor system, and it is assumed that it has two available slots, i.e., up to
two tasks can be issued simultaneously to this computer.

The client machine is located in Spain, so the delay factor for the belle system,
located in Australia, is much higher than the delay factors for the systems located
in Spain (hydrus, cygnus, cepheus, and aquila).

With regard to the CPU prices, it is assumed that the systems are used at
European peak time, and Australian off-peak time, so that belle system exhibits
a CPU price significantly lower than hydrus and cygnus systems. On the other
hand, cepheus and aquila are low-performance systems, and hence their rates are
also lower.

4.2 Application Benchmark

The experimental benchmark used in this work is based on a financial applica-
tion, specifically, a Monte Carlo (MC) simulation algorithm for computing the
Value-at-Risk (VaR) of a portfolio [12] [13]. We briefly describe this application.

The VaR of a portfolio can be defined as the maximum expected loss over a
holding period, ∆t, and at a given level of confidence c, i.e.,

Prob{|∆P (∆t)| < V aR} = 1 − c (10)

Influence of Grid Economic Factors on Scheduling and Migration 281

where ∆P (∆t) = P (t + ∆t) − P (t) is the change in the value of the portfolio
over the time period ∆t.

The Monte Carlo (MC) approach for estimating VaR consists in simulating
the changes in the values of the portfolio assets, and re-evaluating the entire
portfolio for each simulation experiment. The main advantage of this method is
its theoretical flexibility, because it is not restricted to a given risk term distri-
bution and the grade of exactness can be improved by increasing the number of
simulations.

For simulation purposes, the evolution of a single financial asset, S(t), can be
modelled as a random walk following a Geometric Brownian Motion [11]:

dS(t) = µS(t)dt + σS(t)dW (t) (11)

where dW (t) is a Wiener process, µ the instantaneous drift, and σ the volatility
of the asset.

Assuming a log-normal distribution, using the Itô’s Lemma, and integrating
the previous expression over a finite time interval, δt, we can reach an approxi-
mated solution for estimating the price evolution of S(t):

S(t + δt) = S(t)e(µ−σ2/2))δt+ση
√

δt (12)

where η is a standard normal random variable.
For a portfolio composed by k assets, S1(t), S2(t),..., Sk(t), the portfolio value

evolution can be modelled as k coupled price paths:

S1(t + δt) = S1(t)e(µ1−σ2
1/2))δt+σ1Z1

√
δt

S2(t + δt) = S2(t)e(µ2−σ2
2/2))δt+σ2Z2

√
δt

....

Sk(t + δt) = Sk(t)e(µk−σ2
k/2))δt+σkZk

√
δt

(13)

where Z1, Z2, ..., Zk are k correlated random variables with covariance cov(Zi, Zj)
= cov(Si, Sj) = ρij

To simulate an individual portfolio price path for a given holding period ∆t,
using a m-step simulation path, it is necessary to evaluate the price path of all
the k assets in the portfolio at each time interval:

Si(t + δt), Si(t + 2δt), ..., Si(t + ∆t) = Si(t + mδt), ∀i = 1, 2, ..., k (14)

where δt is the basic simulation time-step (δt = ∆t/m).
For each simulation experiment, j, the portfolio value at target horizon is

Pj(t + ∆t) =
k∑

i=1

wiSi,j(t + ∆t) ∀j = 1, ..., N (15)

282 R. Moreno-Vozmediano and A.B. Alonso-Conde

where wi is the relative weight of the asset Si in the portfolio, and N is the
overall number of simulations.

Then, the changes in the value of the portfolio are

∆Pj(∆t) = Pj(t + ∆t) − P (t) ∀j = 1, ..., N (16)

Finally, the VaR of the portfolio can be estimated from the distribution of the
N changes in the portfolio value at the target horizon, taking the (1−c) percentile
of this distribution, where c is the level of confidence.

The Monte Carlo solution for VaR estimation is inherently parallel, since
different simulation experiments can be distributed among different computers
on a grid, using a master-worker paradigm. In order to generate parallel random
numbers we use the Scalable Parallel Random Number Generators Library [14].

To adapt the application to a grid environment and allow migration, the
application must save periodically some kind of checkpoint information. This
adaptation is very straightforward, since saving regularly the output file, which
contains the portfolio values generated by the Monte Carlo simulation up to this
moment, it is sufficient to migrate and restart the application on a different host
from the last point saved. The checkpoint file is saved every 1,000 simulations.
To save properly the checkpoint file, the application should never be interrupted
while the file is being written to disk. To avoid this problem we have protected
the checkpoint file update code section against interruption signals, by masking
all the system signals before opening the file, and unmasking them after closing
the file. The C code is the following:

/***/
/* C code fragment for saving checkpoint file */
/***/
/* Initialize signal group including all the signals */
sigfillset(&blk_group);
/* Mask all the system signals */
sigprocmask(SIG_BLOCK, &blk_group, NULL);
/* Open checkpoint file in append mode */
chkp = fopen("output_file","a");
/* Save checkpoint information */
...........................
/* Write the last 1,000 computed values to the file */
...........................
/* Close checkpoint file */
fclose(chkp);
/* Unmask system signals */
sigprocmask(SIG_UNBLOCK, &blk_group, NULL);
/***/

Influence of Grid Economic Factors on Scheduling and Migration 283

5 Experimental Results

In this section we analyze how this implementation of the GridWay resource
broker behaves under different optimization criteria and user constraints, using
the grid testbed and the application benchmark described in the previous section.

5.1 Cost Optimization and Time Optimization Scheduling

First we show the behavior of the resource broker under different optimization
criteria (cost and time) without considering user constraints. We assume that the
user submits a 4-subtask array job, each subtask performing 500,000 simulations.

Table 2 shows the ordered resource list returned by the resource selector when
the user selects the CPU cost as optimization criterion.

Fig. 1.a shows the resulting cost-optimization scheduling for the four subtasks
submitted, assuming that no job migration is allowed (remember that belle sys-
tem has two execution slots). As we can observe, this scheduling completes all
the four tasks in a period of 22:35 mm:ss, with a CPU expense of 20,090 Grid $.

If job migration is allowed, as shown in Fig. 1.b, the resource broker gets a
much better scheduling, since the CPU cost is reduced to 16,770 Grid $, and
elapsed time is also reduced to 20:57 mm:ss. So, these results highlight the rele-
vance of job migration in grid scheduling.

Notice that, for a given task, the CPU cost is computed as the product of the
execution time and the CPU Price of the resource. Prolog, epilog, and migration

Table 2. Resource ranking for cost-optimization scheduling

Ranking Host Cost-optimization rank function value
1 belle.cs.mu.oz.au 559
2 aquila.dacya.ucm.es 132
3 cepheus.dacya.ucm.es 130
4 cygnus.dacya.ucm.es 127
5 hydrus.dacya.ucm.es 127

Fig. 1. Cost-optimization scheduling (no user constraints). a) Without migration. b)
With migration

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

Task 0

Task 1

Task 2

Task 3

Elapsed Time (mm:ss)

Prolog Exec Epilog

0

5

10

15

20

25

30

C
P

U
 C

os
t (

G
$x

10
00

)

Accumulated Cost

BELLE(1)

BELLE(2)

AQUILA

CEPHEUS

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Task 0

Task 1

Task 2

Task 3

Elapsed Time (mm:ss)

Prolog Exec Migration Exec Epilog

0

5

10

15

20

25

30

C
P

U
 C

os
t (

G
$x

10
00

)

Accumulated Cost

BELLE(1)

BELLE(2)

AQUILA

CEPHEUS BELLE(1)

BELLE(2)

(a) (b)

284 R. Moreno-Vozmediano and A.B. Alonso-Conde

Table 3. Resource ranking for time-optimization scheduling

Ranking Host Time-optimization rank function value
1 cygnus.dacya.ucm.es 2488
2 hydrus.dacya.ucm.es 2488
3 belle.cs.mu.oz.au 2375
4 aquila.dacya.ucm.es 642
5 cepheus.dacya.ucm.es 630

Fig. 2. Time-optimization scheduling (no user constraints)

times are not contemplated for computing the CPU cost, since these periods are
used just for file transmission, and no CPU expense is considered.

Table 3 shows the ordered resource list returned by the resource selector when
the user selects the time as optimization criterion, and Fig. 2 shows the resulting
scheduling. As we can observe, the time-optimization criterion gets an important
time reduction, since the four tasks are completed in 12:14 mm:ss, but at the
expense of increasing the CPU cost up to 25,610 Grid $. In this case, scheduling
with or without migration leads to similar results, since the rank functions of
both cygnus and hydrus systems do not exceed more than 20% the rank function
of belle system, so job migration is discarded.

5.2 Scheduling and Migration Under User Constraints

In this section we examine the effects of user constraints over scheduling. We
first analyze how a budget limit can modify the resulting scheduling.

Fig. 3.a shows the time-optimization scheduling of a 8-subtask array job (each
subtask performing 500,000 simulations), without user constraints. As we can ob-
serve, initially tasks 0-5 are issued using the six available resources, and tasks 6-7
stay pending until some resource is available. When cygnus and hydrus systems
complete their respective tasks, the two pending tasks 6-7 are assigned to these
resources. Furthermore, when belle system completes its two tasks and becomes
available, tasks 4 and 5 in aquila and cepheus systems are migrated to belle, since
it exhibits a higher rank function. This scheduling can be considered optimal in
time, and it takes 17:55 mm:ss, consuming a CPU cost of 53,500 Grid $.

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00

Task 0

Task 1

Task 2

Task 3

Elapsed Time (mm:ss)

Prolog Exec Epilog

0

5

10

15

20

25

30

C
P

U
 C

os
t (

G
$x

10
00

)

Accumulated Cost

CYGNUS

HYDRUS

BELLE(1)

BELLE(2)

Influence of Grid Economic Factors on Scheduling and Migration 285

Fig. 3. Time-optimization scheduling. a) No user constraints. b) Scheduling under
budget limit

Now, we are going to consider a budget limit BL = 45,000 Grid $. With this
user constraint, the resulting scheduling is shown in Fig. 3.b. When cygnus and
hydrus systems complete their respective tasks, they are not eligible to execute
the two pending tasks 6 and 7, since the average budget consumed by these two
systems exceeds the average available budget per task. Instead of selecting these
two expensive systems, the resource broker waits until belle system is available,
and then the two pending tasks are assigned to it. This scheduling keeps the bud-
get limit imposed by the user – the overall CPU consumption is 42,190 Grid $ –,
but it is not optimal in time, since it takes 21:45 mm:ss to complete all the tasks.

Fig. 4. Cost-optimization scheduling. a) No user constraints. b) Scheduling under dead-
line limit

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00

Task 0

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Elapsed Time (mm:ss)

Pending Prolog Exec Migration Exec Epilog

0

5

10

15

20

25

30

35

40

45

50

55

60

C
P

U
 C

os
t (

G
$x

10
00

)

Accumulated Cost

BELLE(1)

BELLE(2)

AQUILA

CEPHEUS BELLE(1)

BELLE(2)

CYGNUS

HYDRUS

CYGNUS

HYDRUS

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Task 0

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Elapsed Time (mm:ss)

Pending Prolog Exec Epilog

0

5

10

15

20

25

30

35

40

45

50

55

60

C
P

U
 C

os
t (

G
$x

10
00

)

Accumulated Cost

BELLE(1)

BELLE(2)

AQUILA

CEPHEUS

BELLE(1)

BELLE(2)

CYGNUS

HYDRUS

(a) (b)

(a) (b)

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00 45:00

Task 0

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Task 9

Elapsed Time (mm:ss)

Pending Prolog Exec Epilog

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

C
P

U
 C

os
t (

G
$x

10
00

)

Accumulated Cost

AQUILA

CEPHEUS

CYGNUS

HYDRUS

CYGNUS

HYDRUS

CYGNUS

HYDRUS

AQUILA

CEPHEUS

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00

Task 0

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Task 9

Elapsed Time (mm:ss)

Pending Prolog Exec Epilog

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

C
P

U
 C

os
t (

G
$x

10
00

)

Accumulated Cost

AQUILA

CEPHEUS

CYGNUS

HYDRUS

CYGNUS

HYDRUS

CYGNUS

HYDRUS

CYGNUS

HYDRUS

286 R. Moreno-Vozmediano and A.B. Alonso-Conde

Finally, we analyze how a deadline limit can also alter the resulting the
scheduling. To observe clearly this effect, we have considered a 10-subtask array
job, with cost-optimization scheduling. In this experiment, we use only four
systems from our testbed: hydrus, cygnus, aquila and cepheus (belle is not used
in this case). Fig. 4.a shows the resulting scheduling without user constraints. In
this scheduling, tasks are allocated to resources as soon as they become available.
This scheduling takes almost 45 min. and the CPU expense is 83,925 Grid $.

Fig. 4.b. shows the cost-optimization scheduling of the 10 subtasks with a
deadline limit DL = 35 min. imposed by the user. In this scheduling, tasks 8
and 9 are not assigned to the systems aquila and cepheus when these resources
become available, because the average time consumed by these resources in the
previous tasks exceeds the remaining time until the user deadline. In this case,
these two pending tasks are delayed until the hydrus and cygnus are available. The
resulting scheduling keeps the deadline limit imposed by the user, since it takes
35 min to complete all the subtasks, but the CPU cost goes up to 91,015 Grid $.

6 Conclusions and Future Work

In this paper we have adapted the scheduling and migration strategies of our
resource broker to deal with economic information and support different user
optimization criteria (time or cost), and different user constraints (deadline and
budget). This implementation of the resource broker uses different rank func-
tions to get an ordered list of resources according to the optimization criteria
specified by the user, and performs different time and cost estimations based on
historical information to discard those resources that are likely to violate the user
constraints. The results also show that migration is essential to adapt resource
mapping to changing conditions on the grid, and guarantee that optimization
criteria and user constraints are met.

In a future work, we plan to incorporate to the brokering model the cost of
other physical resources, like the cost of the memory and disk space used by the
application, the cost of the network bandwidth consumed, etc. The incorpora-
tion of these new elements will lead to the development of new scheduling and
migration policies based on alternative optimization criteria, as well as new cost
estimations to meet user constraints.

References

1. Huedo, E., Montero, R.S., Llorente, I.M.: An Experimental Framework For Exe-
cuting Applications in Dynamic Grid Environments. NASA-ICASE T.R. 2002-43
(2002)

2. Abramson, D., Buyya, R., Giddy, J.: A Computational Economy for Grid Comput-
ing and its Implementation in the Nimrod-G Resource Broker. Future Generation
Computer Systems Journal, Volume 18, Issue 8, Elsevier Science (2002) 1061-1074

3. Huedo, E., Montero, R.S., Llorente, I.M.: An Framework For Adaptive Execution
on Grids. Intl. Journal of Software - Practice and Experience. In press (2004)

Influence of Grid Economic Factors on Scheduling and Migration 287

4. Allen, G., Angulo, D., Foster, I., and others: The Cactus Worm: Experiments with
Dynamic Resource Discovery and Allocation in a Grid Environment. Journal of
High-Performance Computing Applications, Volume 15, no. 4 (2001)

5. Vadhiyar, S.S., Dongarra, J.J.: A Performance Oriented Migration Framework For
The Grid. http://www.netlib.org/utk/people/JackDongarra/papers.htm (2002)

6. Moreno-Vozmediano, R., Alonso-Conde, A.B.: Job Scheduling and Resource Man-
agement Techniques in Economic Grid Environments. Lecture Notes in Computer
Science (LNCS 2970) - Grid Computing (2004) 25-32

7. Sample, N., Keyani, P., Wiederhold, G.: Scheduling Under Uncertainty: Planning
for the Ubiquitous Grid. Int. Conf. on Coordination Models and Languages (2002)

8. Buyya, R., Abramson, D., Giddy, J.: An Economy Driven Resource Management
Architecture for Global Computational Power Grids. Int. Conf. on Parallel and
Distributed Processing Techniques and Applications (2000)

9. Barmouta, A. and Buyya, R., GridBank: A Grid Accounting Services Architecture
(GASA) for Distributed Systems Sharing and Integration. 17th Annual Int. Parallel
and Distributed Processing Symposium (2003)

10. Buyya, R., Abramson, D., Giddy, J., and Stockinger, H.: Economic Models for
Resource Management and Scheduling in Grid Computing The Journal of Concur-
rency and Computation, Volume 14, Issue 13-15 (2002) 1507-1542

11. Jorion, P.: Value at Risk: The Benchmark for Controlling Market Risk McGraw-
Hill Education (2000)

12. Alonso-Conde, A.B., Moreno-Vozmediano, R.: A High Throughput Solution for
Portfolio VaR Simulation. WSEAS Trans. on Business and Economics, Vol. 1,
Issue 1, (2004) 1-6

13. Branson, K., Buyya, R., Moreno-Vozmediano, R., and others: Global Data-
Intensive Grid Collaboration. Supercomputing Conference, HPC Challenge Awards
(2003)

14. Mascagni, M., Srinivasan, A.: Algorithm 806: SPRNG: a scalable library for pseu-
dorandom number generation. ACM Trans. on Mathematical Software (TOMS),
Volume 26, Issue 3, September (2000) 436-461

	Introduction
	The GridWay Resource Broker
	Dispatch Manager and Resource Selector
	Submission Manager

	Scheduling and Migration Under Different User Specifications
	Time Optimization Scheduling and Migration
	Cost Optimization Scheduling and Migration
	Scheduling and Migration Under User Constraints (Budget/Deadline Limits)

	Experimental Environment
	Grid Testbed
	Application Benchmark

	Experimental Results
	Cost Optimization and Time Optimization Scheduling
	Scheduling and Migration Under User Constraints

	Conclusions and Future Work

