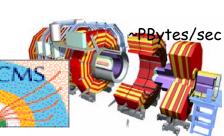
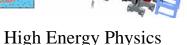
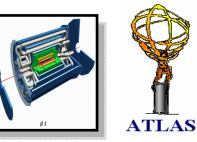

The Global Data Intensive Grid Collaboration

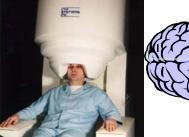
Rajkumar Buyya* (Collaboration Coordinator) + numerous contributors around the globe**.

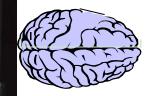
- * Grid and Distributed Systems Laboratory Dept. of Computer Science and Software Engineering The University of Melbourne, Australia
- ** http://gridbus.cs.mu.oz.au/sc2003/participants.html

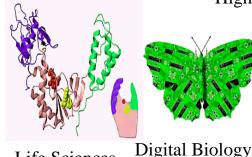

Initial Proposal Authors (Alphabetical Order):


K. Branson (WEHI), R. Buyya (Melbourne), S. Date (Osaka), B. Hughes (Melbourne), Benjamin Khoo (IBM), R. Moreno-Vozmediano (Madrid), J. Smilie (ANU), S. Venugopal (Melbourne), L. Winton (Melbourne), and J. Yu (Melbourne)


Next Generation Applications (NGA)


Next generation experiments, simulations, sensors, satellites, even people and businesses are creating a flood of data. They all involve numerous experts/resources from multiple organization in synthesis, modeling, simulation, analysis, and interpretation.





Brain Activity Analysis

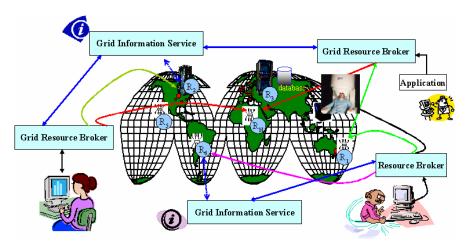
Life Sciences

Quantum Chemistry

Astronomy

REUTERS 🎲 .COM

Newswire & data mining: Natural language engineering



Finance: Portfolio analysis

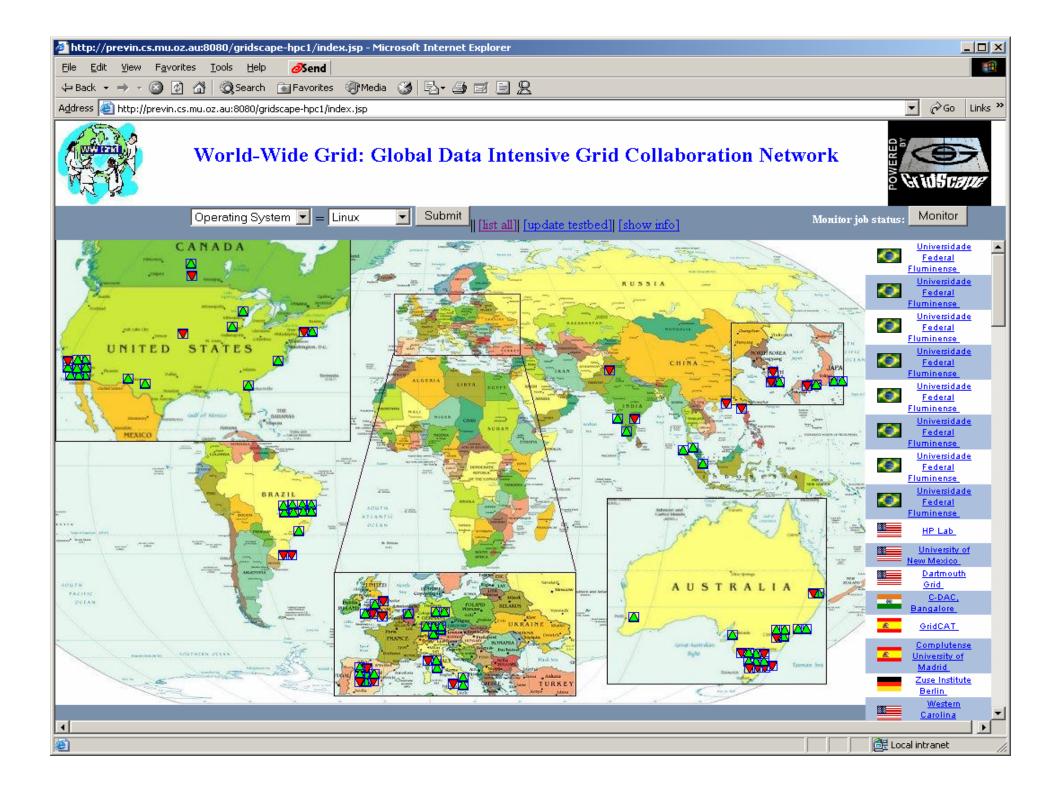
Internet & Ecommerce

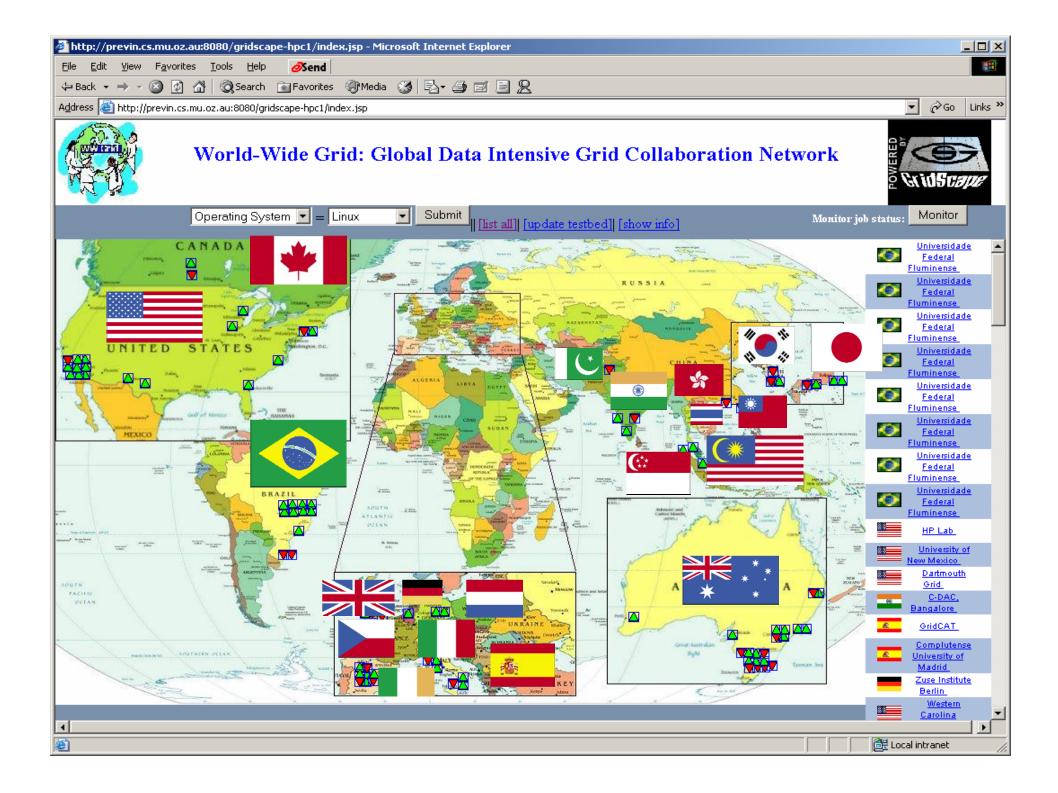
Common Attributes/Needs/Challenges of NGA

- They involve Distributed Entities:
 - Participants/ Organizations
 - Resources
 - Computers
 - Instruments
 - Datasets/Databases
 - Source (e.g., CDB/PDBs)
 - Replication (e.g, HEP Data)
 - Application Components
- Heterogeneous in nature
- Participants require share analysis results of analysis with other collaborators (e.g., HEP)

Grids offer the most promising solution
& enable global collaborations.

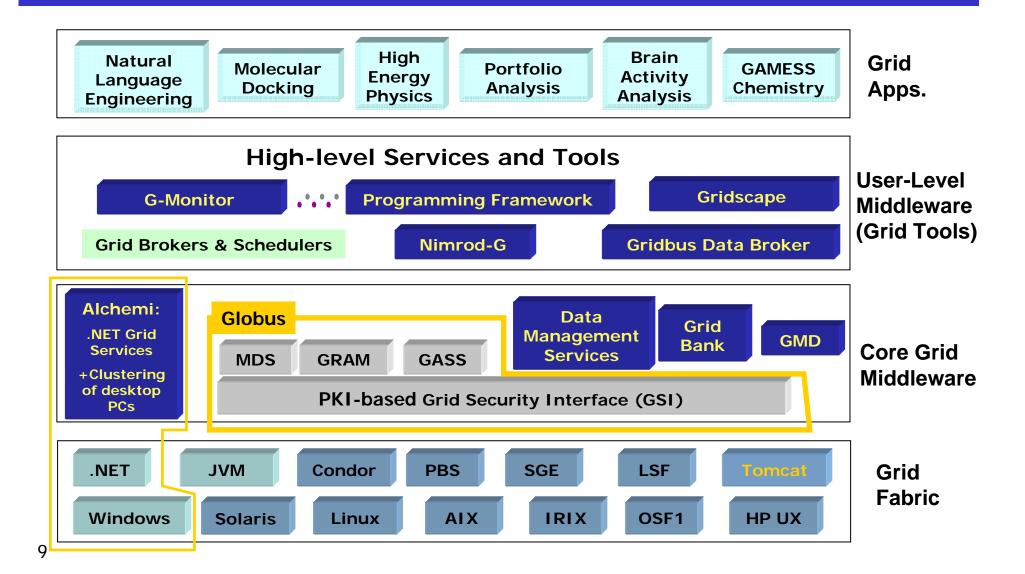
•The beauty of the grid is that it provides a secure access to a wide range of heterogeneous resources.


•But what does it take to integrate and manage applications across all these resources?


What is "The Global Data Intensive Grid Collaboration" Doing ?

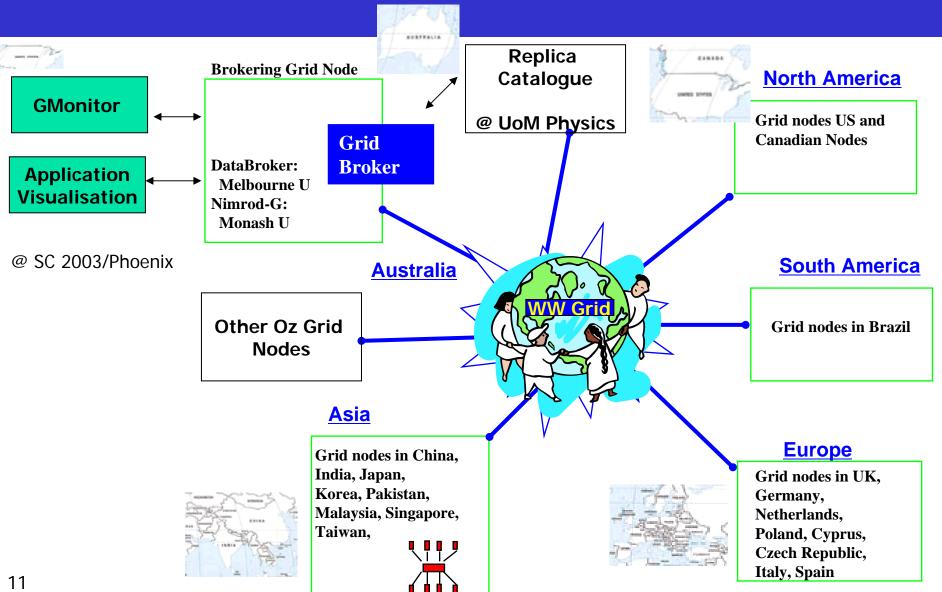
- Assembled several heterogeneous resources, technologies, data-intensive applications of both tightly and loosely coordinated groups and institutions around the world in order to demonstrate both HPC Challenges:
 - Most Data-Intensive Application(s)
 - Most Geographically Distributed Application (s).

The Members of Collaboration



Testbed Statistics (Browse the Testbed)

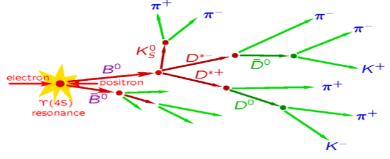
- Grid Nodes: 218 distributed across 62 sites in 21 countries.
 - Laptops, desktop PCs, WS, SMPs, Clusters, supercomputers
 - Total CPUs: 3000+ (~3 TeraFlops)
- CPU Architecture:
 - Intel x86, IA64, AMD, PowerPC, Alpha, MIPS
- Operating Systems:
 - Windows or Unix-variants Linux, Solaris, AIX, OSF, Irix, HP-UX
- Intranode Network:
 - Ethernet, Fast Ethernet, Gigabit, Myrinet, QsNet, PARAMNet
- Internet/Wide Area Networks
 - GrangeNet, AARNet, ERNet, APAN, TransPAC, & so on.


Grid Technologies and Applications

Application Targets

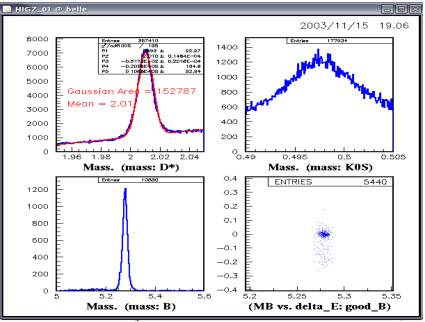
- High Energy Physics Melbourne School of Physics
 - Belle experiment CP (charge parity) violation
- Natural Language Engineering Melbourne School of CS
 - Indexing Newswire Text
- Protein Docking WEHI for Medical Research, Melbourne
 - Screening molecules to identify their potential as drug candidates
- Portfolio Analysis UCM, Spain
 - Value at Risk/Investment risk analysis
- Brain Activity Analysis Osaka University, Japan
 - Identifying symptoms of common disorders through analysis of brain activity patterns.
- Quantum Chemistry Monash and SDSC effort
 - GAMESS

HPC Challenge Demo Setup


Belle Particle Physics Experiment

- A Running experiment based in KEK B-Factory, Japan
- Investigating fundamental violation of symmetry in nature (Charge Parity) which may help explain the universal matter – antimatter imbalance.
- Collaboration 400 people, 50 institutes
- 100's TB data currently
- UoM School of Physics is an active participant and have led the Grid-enabling of the Belle data analysis framework.

Belle Demo - Simulate specific event of interest BO → D*-D*+KS


- Generation of Belle data (1,000,000 simulated events):
 - Simulated (or Monte Carlo) data can be generated anywhere, relatively inexpensively
 - Full simulation is very CPU intensive (full physics of interaction, particles, materials, electronics)
 - We need more simulated than real data to help eliminate statistical fluctuations in our efficiency calculations.
- Simulated specific event of interest:
 - Decay Chain: B0 → D*-D*+KS (Particle B0 decays into 3 particles D*, -D*, +KS)

- The data has been made available to the collaboration via global directory structure (Replica Catalog).
- During the analysis, the broker discovers data using Replica Catalog services.

Analysis

- During the demo, we analysed 1,000,000 events using the Gridenabled BASF (Belle Analysis Software Framework) code.
- The Gridbus broker discovered the catalogued data (lfn:/users/winton/fsimddks/*.mdst) and decomposed them into 100 Grid jobs (each input file size = 3MB) and processed on Belle nodes located in Australia and Japan.
- The broker has optimised the assignment of jobs to Grid nodes to minimise both the data transmission time and computation time and finished the analysis in 20 minutes.
- The analysis output histograms has been visualized:

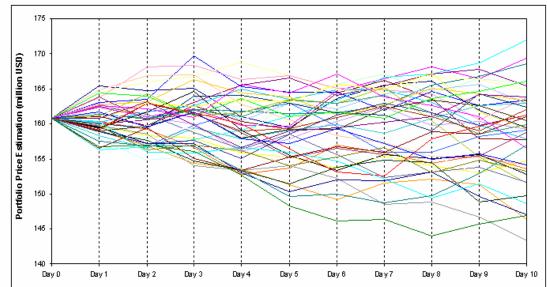
Histogram of an analysis

Adexing Newswire: A Natural Language Engineering Problem

- A newswire service is a dedicated feed of stories from a larger news agency, provided to smaller content aggregators for syndication.
- Essentially a continuous stream of text with little internal structure.
- So, why would we choose to work with such data sources ?
 - Historical enquiry. For example,
 - find all the stories in 1995 about Microsoft and Internet;
 - when was the Bill Clinton and Monica Lewinsky story first exposed.
 - Evaluating how different agencies reported the same event from different perspectives eg US vs European media, New York vs Los Angeles media, television vs cable vs print vs internet.
- The challenge is how do we extract meaningful information from newswire archives efficiently?

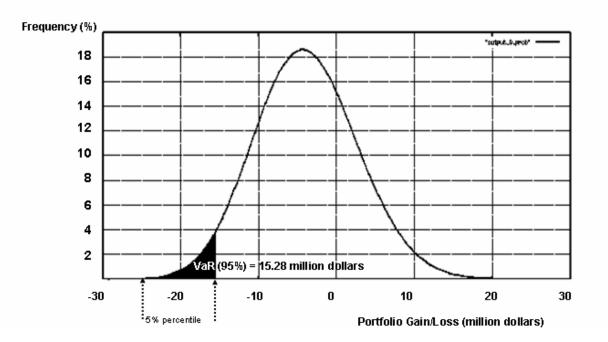
Data and Processing

- In this experiment we used samples from the Linguistic Data Consortium's Gigaword Corpus, which is a collection of 4 different newswire sources (Agence France Press English Service, Associated Press Worldstream English Service, New York Times Newswire Service, and Xinhua News Agency over a period of 7 years.
- A typical newswire service generates 15-20Mb per month of raw text.
- We carried two different types of analysis: statistical & indexational. We extracted all the relevant document IDs and headlines for a specific document type to create an index to the archive itself.
- In the demonstration, we used the 1995 collection from Agence France Press (AFP) English Service, which contains about 100Mb of newswire text.
 - Analysis was carried out on the testbed resources that are conneted by the Australian GrangeNet to minimise the time for input and out data movement and also the processing time.
 - Grid-based analysis was finished in 10 minutes.

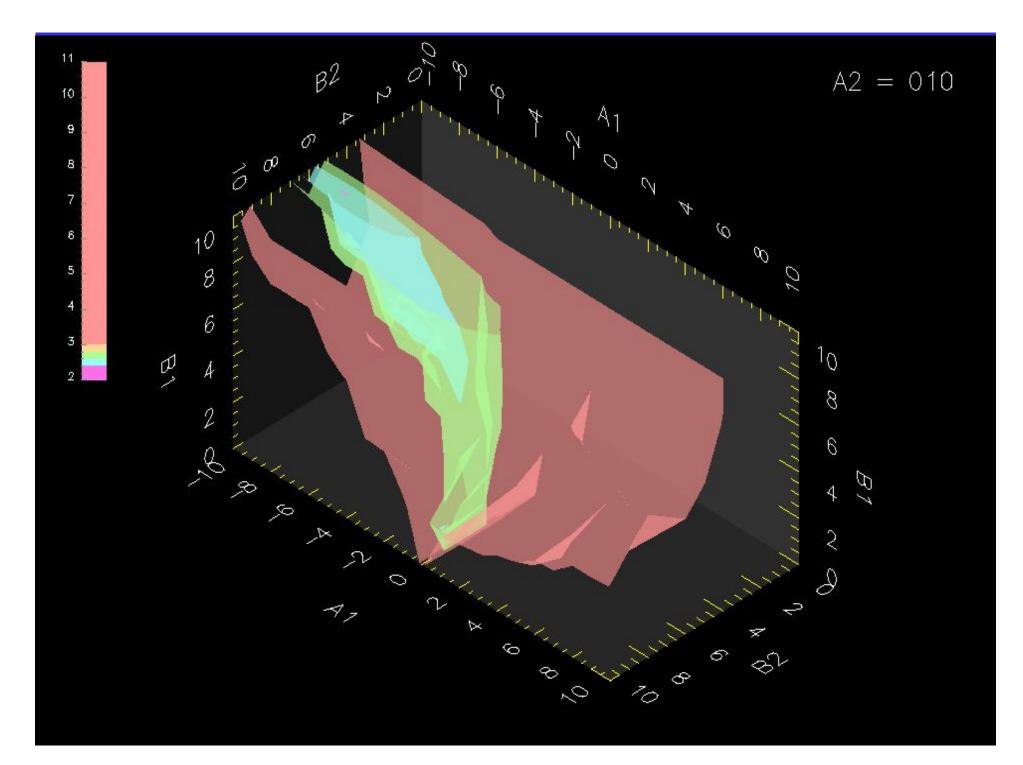

Portfolio Analysis on Grid

Intuitive definition of Value-at-Risk (VaR)

- Given a trading portfolio, the VaR of the portfolio, provides an answer to the following question:
 - How much money can I lose over a given time horizon with a given probability ?????
- Example
 - If the Value-at-Risk of my portfolio is
 - VaR(c=95%,T=10) = 1.0 million dollars
 - c level of confidence, T is holding period
 - It means:
 - The probability of losing more than 1 million dollars over a holding period of 10 days is lower than 5% (1-c)


Computing VaR: the simulation process

- During the demo, We simulated (Monte-Carlo) Nindependent price-paths for the portfolio by using most of the available Grid nodes in the testbed during the demo and finished the analysis within 20 minutes.
- There was significant overlap of Grid nodes during the demo of each application.


Computing VaR: the output

- Once simulated N independent price paths
 - We obtain a frequency distribution of the N changes in the value of a portfolio
 - The VaR with confidence c can be computed as the (1-c)-percentile of this distribution

Quantum Chemistry on Grid

- Parameter Scan of an Effective Group Difference Pseudopotential.
- An experiment by:
 - Kim Baldridge and Wibke Sudholt, UCSD
 - David Abramson and Slavisa Garic, Monash
- Using GAMESS (General Atomic and Molecular Electronic Structure System) application and Nimrod-G broker
- A pre-started experiment and continued during the demo and used majority of available Grid nodes.
- Analyzed electrons and positioning of atoms for various scenarios.
- 13,500 jobs (each job took 5-78 minutes) finished in 15 hours.
- Input: 4KB for each job;
- Total output 860MB compressed.

Analysis Summary

Application	Data Size	Processing Time	Nodes
Belle Analysis (HEP)	300 MB input (100 jobs – 3MB each)	30 min.	Australia, Japan
Financial Portfolio Analysis	50 MB output (50 jobs – 1MB each)	20 min.	Global
Newswire Indexing	80 MB input (12 jobs – 7MB each job)	20 min.	GrangeNet, Australia
GAMESS	4KB for each job. Total output: 860MB compressed	Each job took 5-78 minutes. Total 15 hours	Global (130 nodes, 15 sites)

Summary and Conclusion

- The Global Data Intensive Grid Collaboration has successfully put together:
 - 218 heterogeneously Grid nodes distributed across 62 sites in 21 countries around the globe.
 - they are Grid enabled by technologies (Unix and also Windows based Grid technologies),
 - 6 data-intensive applications: HEP, NLE, Docking, Neuroscience, Quantum Chemistry, & Finance
- And demonstrated both HPC Challenges:
 - Most Data-Intensive Application(s)
 - Most Geographically Distributed Application (s).
- It was all possible due to the hard work of numerous volunteers around the world.

Contributing Persons

Akshay Luther Alexander Reinefeld Andre Merzky Andrea Lorenz Andrew Wendelborn Arshad Ali Arun Agarwal **Baden Hughes Barry Wilkinson Benjamin Khoo Christopher Jordan Colin Enticott Cory Lueninghoener Darran Carey David Abramson** David A. Bader **David Baker David Glass Diego Luis Kreutz Ding Choon-Hoong** Dirk Van Der Knijff Fabrizio Magugliani Fang-Pang Lin Gabriel **Garry Smith** Gee-Bum Koo

Giancarlo Bartoli Glen Moloney Gokul Poduval Grace Foo **Heinz Stockinger** Helmut Heller Henri Casanova James E. Dobson Jem Treadwell Jia Yu **Jim Hayes** Jim Prewett John Henriksson Jon Smillie **Jonathan Giddy** Jose Alcantara Kashif **Kees Verstoep** Kevin Varvell Latha Srinivasan Lluis Ribes Lyle Winton **Manish Prashar** Markus Buchhorn Martin Savior

Matthew Michael Montv Michal Vocu Michelle Gower MohanRam Nazarul Nasirin Niall Wilson **Nigel Teow** Oscar Ardaiz Paolo Trunfio **Paul Coddington** Putchong Uthayopas **R.K.Shyamasundar** Radha Nandakumar Rafael M-Vozmediano **Rafal Metkowski Raj Chhabra** Rajalakshmy Raiiv **Rajiv Ranjan Rajkumar Buyya** Ricardo Robert Sturrock **Rodrigo Real** Roy S.C. Ho

S. Anbalagan Sandeep K. Joshi Selina Dennis Sergey Slavisa Garic Srikumar Steven Bird Steven Melnikoff Subhek Garg **Subrata** Chattopadhyay Sudarshan Sugree Susumu Date **Thomas Hacker Tony McHale** V.C.V. Rao Vinod Rebello Viraj Bhat Wayne Kelly **Xavier Fernandez Y.Tanimura** Yeo Yoshio Tanaka Yu-Chung Chen

Thanks for your attention!

The Global Data-Intensive Grid Collaboration htpp://gridbus.cs.mu.oz.au/sc2003/