
A High Throughput Solution Portfolio VaR Simulation

ANA BELÉN ALONSO CONDE †
RAFAEL MORENO VOZMEDIANO ‡

† Department of Finance, Accounting, and Commerce

Universidad Rey Juan Carlos
Fac. Ciencias Jurídicas y Sociales, P. Artilleros s/n, 28032 Madrid

SPAIN
abac@fcjs.urjc.es

‡ Department of Computer Architecture

Universidad Complutense de Madrid
Fac. de Informática, Ciudad Universitaria, 28040 Madrid

SPAIN
rmoreno@dacya.ucm.es http://www.dacya.ucm.es/rafa

Abstract: - This paper explores the application of Grid computing technology for solving compute-intensive
problems in finance. In particular, we propose a high-throughput parallel version of the Monte Carlo algorithm
for portfolio VaR simulation, based on a master-worker paradigm, which runs in a Grid environment an obtains
a substantial time reduction with regard to the serial algorithm, by exploiting the idle periods of the existing
computational resources, like PC’s or workstations.

Key-Words: - Grid Computing, High-Throughput Computing, Computational Finance, Value-at-Risk, Monte
Carlo.

1 Introduction
The computational issues of common finance
industry problems, such as option pricing, portfolio
optimization, or risk analysis, require the use of
high-performance computing systems and
algorithms. Traditional solutions to these problems
involve the utilization of parallel supercomputers [1],
which exhibits several drawbacks: high cost of the
systems, highly qualified personal for administration
and maintenance, difficult programming
environments (distributed memory or message
passing), etc.

In this context, the Grid is emerging as a new
technology for next generation of high-performance
computing solutions. This technology is based on the
efficient sharing and cooperation of heterogeneous,
geographically distributed computing resources, like
CPUs, clusters, multiprocessors, storage devices,
databases, scientific instruments, etc. Computational
grids have been successfully experienced for solving
grand challenge problems in science and
engineering, however the use of this technology for
high computational demand applications in
economics and finance has not been deeply explored.

Within the range of computational finance
applications, the Monte Carlo simulation based
models are used to solve a broad variety of problems.
Monte Carlo applications are inherently parallel,
since random samples can be generated and

evaluated independently. In this paper we explore the
use of grid technology to implement a parallel
version of a Monte Carlo simulation algorithm for
estimating the Value-at-Risk (VaR) of a portfolio.
This grid-based implementation of the Monte Carlo
algorithm is probed to be highly efficient, since it
obtain a significant simulation time reduction with
respect to the serial version of the algorithm.
Moreover, it can be considered a low-cost solution,
because it does not required the utilization of
complex and expensive parallel computer, but it
makes use of the idle existing computing resources,
like PCs or workstations.

2 Grid Computing Technology
According to the definition of Kesselman and Foster
[2] “A computational grid is a hardware and software
infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to high-end
computational capabilities.” In this context, a grid
user will have the ability of look for and hire out
computational resources around the world, based on
his current computing needs. On the other hand,
companies or individuals proprietary of computing
systems, can benefit from the idle periods of such
resources by making them available for renting on
the grid.

2.1 Grid components
Conceptually the grid is made up of three key
components [3], as shown in figure 1:
- The grid fabric. This component embraces all the

distributed resources that are available from
anywhere on the Internet. The grid fabric can
consist of different kinds computer systems (PCs,
workstations, clusters, supercomputers, etc.)
running various operating systems, as well as other
components like specialized computing devices,
storage systems, scientific instruments, etc.

- The grid middleware. The main functionality of the
grid relies on a complex software infrastructure,
called grid middleware. This middleware includes
different services for resource discovery, remote
job execution and monitoring, remote storage
access, security and quality of service, etc.

- Grid applications. Typical grid applications are
computing or data intensive applications, like
simulations, parameter searches, NP-complete
problems, etc., which demand massive computing
power, or accessing to large data sets. Grid enabled
applications come from many different areas of
science and engineering, like high energy physics,
tomography, drug design, climate modeling,
aerodynamic simulation, financial analysis, etc.

Grid
Fabric
Layer

Computers Networks Storage
devices

Databases Scientific
instruments

Grid
Middleware
Layer

Security
service

Information
service

Resource
discovery

Remote
execution

Remote
storage access

Grid
Application
Layer

Physics Medicine Chemistry Biology Engineering Finance

Simulations Parameter searches NP-complete problems Data mining

Fig. 1. Grid layered architecture

2.2 The Globus Toolkit
The Globus Toolkit [4] has become a de facto
standard middleware in grid computing
environments. Globus comprises a set of components
that implement the basic grid services for security,
information, resource management, and remote data
access. Following, we briefly describe the basic
functionality of these Globus services.
- GSI (Globus Security Infrastructure). Grid

operations involve the access of users to remote
systems, which can belong to a different
organization, and the transmission of information
between grid machines. In this context it is
necessary a security infrastructure supporting user
authentication and encrypted communications.

- GRAM (Globus Resource Allocation Manager).
GRAM allows the users to run jobs in remote
resources. It processes the user requests for remote
application execution, allocates the required
resources, and manages the active jobs.

- MDS (Metacomputing Directory Service). MDS
allows the users to discover and obtain information
to about grid resources. The user can ask the MDS
for static computer information (CPU type,
operating system version, number of processors,
memory size, etc.), dynamic computer information
(load average, free memory, …), storage system
information, etc.

- Global Access to Secondary Storage (GASS).
GASS provides the users basic access to remote
files. Operations supported by GASS include
remote file read, remote file write.

2.2 The GridWay Framework
Although Globus provides the basic tools for grid
operation, the user is responsible for manually
scheduling jobs to the grid. In this context, the
GridWay framework [5] has been developed as a
Globus compatible environment, which simplifies
the user interfacing with the Grid, and provides the
mechanisms for efficient job scheduling and
execution on the Grid with dynamic adaptation to
changing conditions. From the user point of view,
the GridWay framework consists of two main
components (see Figure 2).

GRIDWAY
FRAMEWORK

User-Level Interface

Resource Broker

MDS GASS GRAM
GLOBUS
COMPONENTS

COMPUTING
RESOURCES

Resource
Selection

Transmission
of job files

Job submission
management

User
Commands

gwsubmit
gwkill
gwps
gwhistory

010010010100
101001001000
101101001001
000010000111
010100101011
001000100100

Binary
File

010010010100
101001001000
101101001001
000010000111
010100101011
001000100100

Binary
File

Binay filename
Input arguments
Input filename
Output filename
Rank expression

Template
File

Binay filename
Input arguments
Input filename
Output filename
Rank expression

Template
File

Input
Data File

Input
Data File

Output
Data File
Output

Data File

Fig. 2. Gridway and Globus interoperability

- The command-Line User Interface. This interface
significantly simplifies the user operation on the
Grid by providing several user-friendly commands
for submitting jobs to the Grid along with their

respective input files, controlling, and monitoring
the state of the jobs.

- The personal Resource Broker. Each user interacts
with its own personal resource broker, which
communicates with the different Globus
components, and is responsible for resource
discovering, scheduling and submitting the user
jobs, monitoring job performance, and migrating
jobs when it is required. The scheduling policy is
based on a greedy approach, so that the scheduler
tries to maximize the optimization criterion
specified by the user for each individual job.

3 Monte Carlo Value-at-Risk
To illustrate the application of grid technology to
solve complex computational problems in finance we
have implemented a Monte Carlo simulation
algorithm for computing the Value-at-Risk (VaR) of
a portfolio [6].
The VaR of a portfolio can be defined as the
maximum expected loss over a holding period, ∆t,
and at a given level of confidence c, i.e.,

cVaRtPob −=<∆∆ 1})({Pr (1)
where)()()(tPttPtP −∆+=∆∆ is the change in
the value of the portfolio over the time period ∆t.
Several methods for computing VaR have been
proposed:
- Parametric models, like asset-normal VaR, delta-

normal VaR, or delta-gamma-normal VaR.
- Non-parametric models, like historical simulation

or Monte Carlo (MC) simulation.
The MC approach is based on simulating the changes
in the values of the risk factors, and revaluating the
entire portfolio for each simulation experiment. The
main advantage of this method is its theoretical
flexibility, because it is not restricted to a given risk
term distribution and the grade of exactness can be
improved by increasing the number of simulation.
For simulation purposes, the evolution of a single
asset, S(t), can be modeled as a random walk
following a Geometric Brownian Motion:

)()()()(tdWtSdttStSd σµ += (1)
where dWt is a Wiener process, µ the instantaneous
drift and σ the volatility of the asset.
Assuming a lognormal distribution and using the
Itô’s Lemma, the expression (2) can be transformed
in an Arithmetic Brownian Motion:

)()2/())((ln 2 tdWdttSd σσµ +−= (3)
Integrating the previous expression over a finite time
interval, tδ , we can reach an approximated solution
for estimating the price evolution of S(t):

))2/(2

)()(tetSttS δσηδσµδ +∆−=+ (4)
where η is a standard normal random variable.
For a portfolio composed by k assets, S1(t), S2(t), …,
Sk(t), the portfolio value evolution can be modeled as
k coupled price paths:

))2/(2

)()(tZt
ii

iiiietSttS δσδσµδ +−=+ (5)
where Zi are k correlated random variables with
covariance

ijjiji SSZZ ρ==),cov(),cov((6)
To transform a vector of k uncorrelated normally
distributed random variables η =(η1, η2, …, ηk) into
a vector of n correlated random variables Z =(Z1, Z2,
…, Zk), we can use the Cholesky descomposition of
the covariance matrix, R:
R = AAT (7)

where

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

kkkk

k

k

R

ρρρ

ρρρ
ρρρ

K

MMM

L

L

21

22221

11211

 is assumed to be

symmetric and positive definite, A is a lower
triangular matrix and AT is the transpose of A.
Then, applying the matrix A to η generates the new
correlated random variables Z
Z = A η (8)
To simulate an individual portfolio price path for a
given holding period ∆t, using a m-step simulation
path, it is necessary to evaluate the price path of all
the n assets in the portfolio at each time interval:
Si(t+δt), Si(t+2δt),…, Si(t+∆t)=Si(t+mδt), ∀ i=1, 2,
…, n, where δt is the basic simulation time-step, δt
=∆t/m.
For each simulation experiment, j, the portfolio value
at target horizon is

NjttSwttP
k

i
jiij ∑

=

=∀∆+=∆+
1

, ,...,1),()((9)

where wi is the relative weight of the asset Si in the
portfolio, and N is the overall number of simulations.
The changes in the value of the portfolio are

NjtPttPtP jj ,...,1)()()(=∀−∆+=∆∆ (10)
The portfolio VaR can be measured from the
distribution of the N changes in the portfolio value at
the target horizon, taking the (1-c)-percentile of this
distribution, where c is the level of confidence.
The convergence error (εN) of the MC estimation can
be approximated to

∑
=

−
−

=
K

j
jN PP

N 1

2)(
)1(

1)
ε (3)

where P
)

 is the average value of the portfolio at
target horizon. Hence, the convergence error of the
MC estimation decreases at the order)1(NO .

4 Monte Carlo Simulation on a Grid
The main drawback of Monte Carlo simulation is the
computational cost, since a large number of price
paths may be necessary to evaluate in order to obtain
accurate results, and hence the simulation time may
be extremely long. To lessen this problem two kind
of techniques are mainly used:
- Variance reduction techniques. These techniques

try to reduce the number of simulations required to
reach a precise result. There is a good variety of
variance reduction techniques [7], as for example
control variate, importance sampling, stratified
sampling, conditional Monte Carlo, etc. Although
the efficiency of these techniques has been proved
in several works, their use results in a substantial
increase of the VaR model complexity.
Nevertheless, the analysis of these techniques is
beyond the scope of this paper.

- Parallel Monte Carlo implementation. The second
alternative to reduce the MC simulation time is
implementing a high throughput version of the
algorithm [7], capable of distributing the portfolio
price path computations in parallel over different
computing resources. These computer resources
can be different processors within a parallel
supercomputer, can be different computers within a
cluster, or, as we propose in this work, can be
different computing resources within a grid
environment.

Since MC simulation methods rely on the generation
of random number sequences, we first analyze the
most common methods for generating random
numbers in a parallel environment, and then we
propose a methodology for distributing the
computations on the grid, based on a master-worker
paradigm.

4.1 Parallel random number generation

An ideal random number generator (RNG) should
meet with several conditions: the sequences satisfy
statistical tests for randomness; are uniformly
distributed; are not correlated; have long period; are
reproducible; are fast; are portable; can be changed
by adjusting seed; and require limited memory.
Certainly, it is impossible for a computer to generate
random number sequences satisfying all these
requirements simultaneously. However, for practical
purposes, MC algorithms can use pseudo-random

number sequences, provided that the period of the
stream is larger than the total number of random
numbers needed by the application, and the
correlations are sufficiently weak. The most common
serial pseudo-random number generators employed
in Monte Carlo applications are the Linear
Congruential Generator (LCG) and the Lagged
Fibonacci Generator (LFG).
LFG has become very popular because it is easy to
implement, the computation of the sequence exhibits
low computational cost, and it satisfies excellently
the statistical tests for randomness.
On the other hand, parallel random number
generators should satisfy the same conditions than
serial RNGs, and some extra requirements: the
streams should not exhibit inter-processor
correlation; the algorithm must be scalable, i.e., it
must work for any number of processors; the
communication between processors must be
minimum.
In the last few years, a variety of parallel pseudo-
random number generators based on
parameterization have been developed and tested.
These algorithms have been implemented and freely
distributed in the software package SPRNG (Pseudo
Random Number Generators Library) [8], which
includes different parallel pseudo-random number
generators (linear congruential generators, additive
and multiplicative lagged Fibonacci generators, and
combined multiple recursive generators)

4.2 The master-worker computing paradigm
The Master-Worker (MW) paradigm has been
broadly used to solve a variety of large-scale
problems in a parallel or distributed environment,
like tree-search algorithms, genetic algorithms, or
Monte Carlo simulations.
As shown in Figure 3, the master application
partitions the problem in T identical subtasks or jobs,
which are distributed among different workers. The
master can monitor the activity of the workers and
detect the job completion. As the workers complete
their jobs, the master must collect all the output files.
In our particular problem, each job computes N/T
different portfolio values, where N is the overall
number of simulations.
The master uses the GridWay interface to submit the
array of T subtasks to the Grid, trying to maximize
some optimization criterion specified by the user.
The GridWay framework interacts with Globus to
resource discovering, selecting resources for job
execution, transmitting job files, and monitoring and
controlling job progress.

MASTER
Partition the Monte Carlo problem in T subtasks

GridWay resource broker
+

Globus components

Submit subtasks to the Grid

WORKERS

Distribute subtasks
to different workers

The Grid

Compute portfolio VaR

Collect output files
MASTER

Fig. 3. The master-worker paradigm

The submission of each subtask involves three
stages:
- Prolog: the application binary file and the input

data files are transmitted to the worker.
- Execution: the worker performs the number of

simulations specified by the master.
- Epilog: the worker sends back the output file to the

master
When all the sub-tasks are completed, the master
merges the output files and computes the portfolio
VaR with confidence c.
It is important to note that a grid is a heterogeneous
environment, where workers can exhibit different
characteristics and performance. This fact differs
from other parallel environments, like a
multiprocessor system or a workstation cluster,
where all the processors usually have similar
features. Consequently, in a grid context, job
scheduling becomes an important challenge [10],
since the overall execution time is enforced by the
slowest worker.

3 Results
To evaluate the proposed high throughput approach
for Monte Carlo VaR, we have chosen a 76-asset
portfolio1, and a time horizon of 10 days. In order to
reduce the relative convergence error under 2%, we
have performed 4 million price-path simulations
using a one day time-step. If we run a serial version
of the algorithm on the master computer, a Pentium
III at 600Mhz, the 4 million simulations take around
25 minutes in executing.
In order to reduce this time we have implemented a
master-worker version of the algorithm, which run
on the distributed resources of our heterogeneous

1 The composition of the portfolio has been taken from the
Citiequity Euroland Fund Euro, managed by Citibank.

grid testbed. The main features of these resources are
summarized on Table 1. A multiplicative lagged
Fibonacci generator has been used for parallel
random number generation.

Host Processor
model

CPU
Clock
(MHz)

Mem.
(MB)

OS Peak
Perform.

(GFLOPS)
Master PC P-III 600 256 Linux 0,6
Worker #1 PC P-IV 2400 512 Linux 2,4
Worker #2 PC P-IV 2400 512 Linux 2,4
Worker #3 Sun Blade

100
502 256 Solaris 1,0

Worker #4 Sun
Enterp.
250

250 x 2
CPUs

256 Solaris 1,0

Table 1. Main features of grid resources

We have divided the problem in 40 identical
subtasks, each one performing 100,000 simulations,
and we have achieved different experiments, whose
results are summarized in Fig. 42.
In the experiment #1, all the 40 subtasks are
submitted to the Worker #1 (PC Pentium IV 2,4
Ghz). Although there is an important time reduction
with respect to completion time in the master (6,5
minutes against 25 minutes), thanks to the higher
performance of the worker, it is important to note
that the prolog and epilog times are very significant
(23% of the overall time, in average), and cannot be
ignored. This fact is evidenced by the experiment #2,
where the subtasks are distributed between workers
#1 and #2 (20 subtasks each). However, even tough
both workers are identical machines, the completion
time reduction does not reach a 30%, since the
prolog and epilog times do not diminish in the same
proportion than the execution time.
Experiments #3 and #4 highlight the relevance of
scheduling in a heterogeneous environment. In the
experiment #3, scheduling is done without regarding
to the worker performance, so that the same number
of tasks are distributed among all the four workers
(10 subtasks each one). With this sub-optimal
scheduling the completion time get worse than the
previous experiments, since it is dominated by the
slowest workers. In such an environment, it is
important to distribute the tasks in proportion to the
performance of each worker, as done in the
experiment #4, where workers #1 and #2 execute 15
subtasks each one, while workers #3 and #4 execute
5 subtasks each one. As we can observe, this
scheduling improves the execution time with regard
to the previous experiments.

2 All the experiments have been performed assuming

Experiment #1

0 50 100 150 200 250 300 350 400 450
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

Su
bt

as
ks

Time (s)

Prolog Execution Epilog

Worker #1
(PC P-IV)

Experiment #2

0 50 100 150 200 250 300 350 400 450
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

Su
bt

as
ks

Time (s)

Prolog Execution Epilog

Worker #2
(PC P-IV)

Worker #1
(PC P-IV)

Experiment #3

0 50 100 150 200 250 300 350 400 450
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

Su
bt

as
ks

Time (s)

Prolog Execution Epilog

Worker #2
(PC P-IV)

Worker #1
(PC P-IV)

Worker #4
(Sun E. 250)

Worker #3
(SUN B. 100)

Experiment #4

0 50 100 150 200 250 300 350 400 450
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

Su
bt

as
ks

Time (s)

Prolog Execution Epilog

Worker #2
(PC P-IV)

Worker #1
(PC P-IV)

Worker #4
(Sun E. 250)

Worker #3
(SUN B. 100)

Fig. 4. Experimental results

4 Conclusion and future work
In this paper we have shown how modern grid
technologies can be used to provide high-throughput
solutions for classical finance problems, like Monte
Carlo VaR estimation. The exploitation of the idle
periods of the existing computational resources

brings new opportunities for solving compute-
intensive finance problems at a low-cost.
Several important issues will be explored in future
works: adapting the scheduling to dynamic and
changing grid conditions, like variations in the
workload of the workers, which can reduce their
effective performance, or variations in the file
transmission times (prolog and epilog periods) due
to different network bandwidths, improving fault
tolerance under unexpected worker fails, etc.

References:
[1] S. A. Zenios, High-Performance Computing in
Finance: The las 10 years and the next, Parallel
Computing, No. 25, 1999, pp. 2149-2157.
[2] Foster, I., Kesselman, C., The Grid: Blueprint for
a New Computing Infrastructure, Morgan
Kaufmann, 1998.
[3] R. Buyya, Economic-based Distributed Resource
Management and Scheduling for Grid Computing,
PhD thesis, Monash University (Melbourne –
Australia), 2002, chapter 2, pp. 9-23.
[4] I. Foster, C. Kesselman, The Globus Project: A
Status Report. In Proc. Heterogeneous Computing
Workshop, IEEE Press, 1998, pp. 4-18.
[5] E. Huedo, R.S. Montero, I.M. Llorente, An
Experimental Framework For Executing
Applications in Dynamic Grid Environments,
NASA-ICASE Technical Report 2002-43.
[6] P. Jorion, Value at Risk: The New Benchmark for
Managing Financial Risk, McGraw-Hill (2nd
edition), 2000.
[7] P. Glasserman, P. Heidelberger, P. Shahabuddin,
Variance Reduction Techniques for Estimating
Value-at-Risk, Management Science, Vol. 46,
October 2000, pp. 1349-1364.
[8] J. Basney, R. Raman, M. Livny, High
Throughput Monte Carlo. Proc. of the Ninth SIAM
Conference on Parallel Processing for Scientific
Computing, San Antonio, Texas, March 1999.
[9] M. Mascagni, A. Srinivasan, Algorithm 806:
SPRNG: a scalable library for pseudorandom
number generation. ACM Transactions on
Mathematical Software (TOMS), Vol. 26, No. 3,
September, 2000, pp. 436-461.
[10] R. Moreno, Job Scheduling and Resource
Management Techniques in Dynamic Grid
Environments, Proc. of the 1st European Across
Grids Conference (published in CD-ROM), 2003.

